纤维素纳米复合韧性水凝胶:协同自愈合、粘合和应变敏感特性

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-04-25 DOI:10.1002/pi.6644
Mohammed Nujud Badawi, Namrata Agrawal, Yogesh Kumar, Mujeeb Khan, Mohammad Rafe Hatshan, Abdulmajeed Abdullah Alayyaf, Syed Farooq Adil
{"title":"纤维素纳米复合韧性水凝胶:协同自愈合、粘合和应变敏感特性","authors":"Mohammed Nujud Badawi,&nbsp;Namrata Agrawal,&nbsp;Yogesh Kumar,&nbsp;Mujeeb Khan,&nbsp;Mohammad Rafe Hatshan,&nbsp;Abdulmajeed Abdullah Alayyaf,&nbsp;Syed Farooq Adil","doi":"10.1002/pi.6644","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements are notable in electrically conductive hydrogels emulating human skin functions. However, a significant challenge remains: crafting a single conductive gel that integrates self-healing, robust mechanical strength, and excellent electrical traits. Our innovation lies in a strong, lightweight, curable gel achieved through multiple coordination bonds between cellulose crystals and acid-treated multi-walled carbon nanotubes (MWCNTs) in a polymer network. Embedded MWCNTs act as dynamic bridges within a porous structure, giving exceptional mechanical performance. Reversible coordination interactions confer remarkable recovery and reliable mechanical and electrical self-healing. Additionally, these ionic gels function as adaptable stress sensors, detecting significant movements like finger and joint motions. This work introduces MWCNT-incorporated nanomaterials with good stretchability, high ion conductivity, remarkable self-healing nature, and good stress sensitivity. Such proteins hold promise for electronic sensors, wearable devices, and healthcare monitoring, unveiling a path to diverse applications. Our study addresses challenges and unlocks possibilities for materials that can adapt, withstand, and sense in innovative ways. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 9","pages":"748-760"},"PeriodicalIF":2.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellulose nanocomposite tough hydrogels: synergistic self-healing, adhesive and strain-sensitive properties\",\"authors\":\"Mohammed Nujud Badawi,&nbsp;Namrata Agrawal,&nbsp;Yogesh Kumar,&nbsp;Mujeeb Khan,&nbsp;Mohammad Rafe Hatshan,&nbsp;Abdulmajeed Abdullah Alayyaf,&nbsp;Syed Farooq Adil\",\"doi\":\"10.1002/pi.6644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements are notable in electrically conductive hydrogels emulating human skin functions. However, a significant challenge remains: crafting a single conductive gel that integrates self-healing, robust mechanical strength, and excellent electrical traits. Our innovation lies in a strong, lightweight, curable gel achieved through multiple coordination bonds between cellulose crystals and acid-treated multi-walled carbon nanotubes (MWCNTs) in a polymer network. Embedded MWCNTs act as dynamic bridges within a porous structure, giving exceptional mechanical performance. Reversible coordination interactions confer remarkable recovery and reliable mechanical and electrical self-healing. Additionally, these ionic gels function as adaptable stress sensors, detecting significant movements like finger and joint motions. This work introduces MWCNT-incorporated nanomaterials with good stretchability, high ion conductivity, remarkable self-healing nature, and good stress sensitivity. Such proteins hold promise for electronic sensors, wearable devices, and healthcare monitoring, unveiling a path to diverse applications. Our study addresses challenges and unlocks possibilities for materials that can adapt, withstand, and sense in innovative ways. © 2024 Society of Chemical Industry.</p>\",\"PeriodicalId\":20404,\"journal\":{\"name\":\"Polymer International\",\"volume\":\"73 9\",\"pages\":\"748-760\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer International\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pi.6644\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6644","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,在模拟人体皮肤功能的导电水凝胶方面取得了显著进展。然而,一项重大挑战依然存在:如何制作出一种集自愈合、强大的机械强度和优异的电气特性于一体的导电凝胶。我们的创新在于通过聚合物网络中的纤维素晶体和酸处理多壁碳纳米管(MWCNTs)之间的多重配位键来实现一种强度高、重量轻、可固化的凝胶。嵌入的 MWCNT 在多孔结构中起着动态桥梁的作用,具有优异的机械性能。可逆的配位相互作用带来了显著的恢复能力和可靠的机械与电气自愈能力。此外,这些离子凝胶还可作为适应性强的应力传感器,检测手指和关节运动等重要动作。这项工作介绍了含有多壁碳纳米管的纳米材料,它们具有良好的伸展性、高离子导电性、显著的自愈性和良好的应力敏感性。这些特性为电子传感器、可穿戴设备和医疗保健监测带来了希望,为各种应用开辟了道路。我们的研究解决了材料所面临的挑战,并开启了材料以创新方式适应、承受和感知的可能性。本文受版权保护,保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellulose nanocomposite tough hydrogels: synergistic self-healing, adhesive and strain-sensitive properties

Recent advancements are notable in electrically conductive hydrogels emulating human skin functions. However, a significant challenge remains: crafting a single conductive gel that integrates self-healing, robust mechanical strength, and excellent electrical traits. Our innovation lies in a strong, lightweight, curable gel achieved through multiple coordination bonds between cellulose crystals and acid-treated multi-walled carbon nanotubes (MWCNTs) in a polymer network. Embedded MWCNTs act as dynamic bridges within a porous structure, giving exceptional mechanical performance. Reversible coordination interactions confer remarkable recovery and reliable mechanical and electrical self-healing. Additionally, these ionic gels function as adaptable stress sensors, detecting significant movements like finger and joint motions. This work introduces MWCNT-incorporated nanomaterials with good stretchability, high ion conductivity, remarkable self-healing nature, and good stress sensitivity. Such proteins hold promise for electronic sensors, wearable devices, and healthcare monitoring, unveiling a path to diverse applications. Our study addresses challenges and unlocks possibilities for materials that can adapt, withstand, and sense in innovative ways. © 2024 Society of Chemical Industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1