{"title":"关于有运动边界的机械系统振动问题的一种解决方案","authors":"V. Litvinov, K. Litvinova","doi":"10.18287/2541-7525-2024-30-1-40-49","DOIUrl":null,"url":null,"abstract":"An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximatemethod was made depending on the speed of the boundary movement.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"28 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On one solution of the problem of vibrations of \\nmechanical systems with moving boundaries\",\"authors\":\"V. Litvinov, K. Litvinova\",\"doi\":\"10.18287/2541-7525-2024-30-1-40-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximatemethod was made depending on the speed of the boundary movement.\",\"PeriodicalId\":427884,\"journal\":{\"name\":\"Vestnik of Samara University. Natural Science Series\",\"volume\":\"28 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik of Samara University. Natural Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2541-7525-2024-30-1-40-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2024-30-1-40-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On one solution of the problem of vibrations of
mechanical systems with moving boundaries
An analytical method of solving the wave equation describing the oscillations of systems with moving boundaries is considered. By changing the variables that stop the boundaries and leave the equation invariant, the original boundary value problem is reduced to a system of functional-difference equations, which can be solved using direct and inverse methods. An inverse method is described that makes it possible to approximate quite diverse laws of boundary motion by laws obtained from solving the inverse problem. New particular solutions are obtained for a fairly wide range of laws of boundary motion. A direct asymptotic method for the approximate solution of a functional equation is considered. An estimate of the errors of the approximatemethod was made depending on the speed of the boundary movement.