Silvia Greco, Luisa Molari, Giovanni Valdrè, Jose Jaime Garcia
{"title":"六种竹子和 Arundo donax 的多层次分析:对意大利种植林的初步调查","authors":"Silvia Greco, Luisa Molari, Giovanni Valdrè, Jose Jaime Garcia","doi":"10.1007/s00226-024-01547-0","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focuses on a multilevel analysis considering six species of bamboo of the <i>Phyllostachys</i> family (<i>P. bambusoides</i>, <i>edulis</i>, <i>iridescens</i>, <i>viridiglaucescens</i>, <i>violacescens</i>, and <i>vivax</i>) and <i>Arundo donax</i> grown in temperate climates, most of them not already studied in the literature. The analysis is divided into three levels. The analysis at the first level (the microscopic scale) includes an anatomical study to assess the shapes and dimensions of the vascular bundles and the sclerenchymatic and parenchymatic tissues. At the second mesoscale level, the percentage and distribution of the fibres, voids and parenchyma are calculated. At the third level, the macroscopic one, a discussion of the influence of the microscopical properties on mechanical properties is carried out. Despite the limited number of specimens analysed at the microscale level, differences between species emerged from the analysis and influenced the macroscopic characteristic values. In particular, the morphology of the components differs, especially in the case of <i>Arundo donax</i>, which presents a unique distribution of its components along the culm wall. Different contents of each component are observed for the species analysed. Moreover, an innovative analysis that focuses on the presence and distribution of voids is presented, which have a fundamental role in the mechanical behaviour of this material. The analysis did not account for the influence of the environment on composition or anatomical and physical characteristics.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":"58 3","pages":"1025 - 1049"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00226-024-01547-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Multilevel analysis of six species of Phyllostachys bamboo and Arundo donax: preliminary survey on Italian grown stands\",\"authors\":\"Silvia Greco, Luisa Molari, Giovanni Valdrè, Jose Jaime Garcia\",\"doi\":\"10.1007/s00226-024-01547-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper focuses on a multilevel analysis considering six species of bamboo of the <i>Phyllostachys</i> family (<i>P. bambusoides</i>, <i>edulis</i>, <i>iridescens</i>, <i>viridiglaucescens</i>, <i>violacescens</i>, and <i>vivax</i>) and <i>Arundo donax</i> grown in temperate climates, most of them not already studied in the literature. The analysis is divided into three levels. The analysis at the first level (the microscopic scale) includes an anatomical study to assess the shapes and dimensions of the vascular bundles and the sclerenchymatic and parenchymatic tissues. At the second mesoscale level, the percentage and distribution of the fibres, voids and parenchyma are calculated. At the third level, the macroscopic one, a discussion of the influence of the microscopical properties on mechanical properties is carried out. Despite the limited number of specimens analysed at the microscale level, differences between species emerged from the analysis and influenced the macroscopic characteristic values. In particular, the morphology of the components differs, especially in the case of <i>Arundo donax</i>, which presents a unique distribution of its components along the culm wall. Different contents of each component are observed for the species analysed. Moreover, an innovative analysis that focuses on the presence and distribution of voids is presented, which have a fundamental role in the mechanical behaviour of this material. The analysis did not account for the influence of the environment on composition or anatomical and physical characteristics.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":\"58 3\",\"pages\":\"1025 - 1049\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00226-024-01547-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01547-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01547-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
摘要
本文重点对生长在温带气候区的六种竹子(Phyllostachys family (P. bambusoides, edulis, iridescens, viridiglaucescens, violacescens, and vivax))和 Arundo donax 进行了多层次分析,其中大部分竹子尚未在文献中进行过研究。分析分为三个层次。第一个层次(显微尺度)的分析包括解剖学研究,以评估维管束以及硬质和实质组织的形状和尺寸。在第二个中尺度层面,计算纤维、空隙和实质组织的百分比和分布情况。在第三个宏观层面,讨论了微观特性对机械特性的影响。尽管在微观层面上分析的试样数量有限,但分析结果表明不同种类之间存在差异,并对宏观特性值产生了影响。特别是,各成分的形态不同,尤其是 Arundo donax,它的各成分沿着秆壁呈现出独特的分布。在所分析的物种中,每种成分的含量都不同。此外,还介绍了一种创新分析方法,重点关注空隙的存在和分布,空隙在这种材料的机械行为中起着根本性的作用。该分析没有考虑环境对成分或解剖和物理特征的影响。
Multilevel analysis of six species of Phyllostachys bamboo and Arundo donax: preliminary survey on Italian grown stands
The paper focuses on a multilevel analysis considering six species of bamboo of the Phyllostachys family (P. bambusoides, edulis, iridescens, viridiglaucescens, violacescens, and vivax) and Arundo donax grown in temperate climates, most of them not already studied in the literature. The analysis is divided into three levels. The analysis at the first level (the microscopic scale) includes an anatomical study to assess the shapes and dimensions of the vascular bundles and the sclerenchymatic and parenchymatic tissues. At the second mesoscale level, the percentage and distribution of the fibres, voids and parenchyma are calculated. At the third level, the macroscopic one, a discussion of the influence of the microscopical properties on mechanical properties is carried out. Despite the limited number of specimens analysed at the microscale level, differences between species emerged from the analysis and influenced the macroscopic characteristic values. In particular, the morphology of the components differs, especially in the case of Arundo donax, which presents a unique distribution of its components along the culm wall. Different contents of each component are observed for the species analysed. Moreover, an innovative analysis that focuses on the presence and distribution of voids is presented, which have a fundamental role in the mechanical behaviour of this material. The analysis did not account for the influence of the environment on composition or anatomical and physical characteristics.
期刊介绍:
Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.