Raul-Victor Erhan, Victor-Otto de Haan, Christoph Frommen, Kenneth Dahl Knudsen, Isabel Llamas-Jansa, Bjørn Christian Hauback
{"title":"紧凑型中子源多用途飞行时间中子反射仪构想","authors":"Raul-Victor Erhan, Victor-Otto de Haan, Christoph Frommen, Kenneth Dahl Knudsen, Isabel Llamas-Jansa, Bjørn Christian Hauback","doi":"10.3390/instruments8020030","DOIUrl":null,"url":null,"abstract":"The design of a time-of-flight neutron reflectometer proposed for the new generation of compact neutron sources is presented. The reflectometer offers the possibility to use spin-polarized neutrons. The reflectometer design presented here takes advantage of a cold neutron source and uses neutrons with wavelengths in the range of 2–15 Å for the unpolarized mode. In general, due to tight spatial restrictions and the need to avoid moving parts inside the beam channel, a multi-channel collimator guide and reflective neutron guide are used for the first section of the instrument. This enables definition of the desired wavelength band and easy selection of one out of three different Q-resolutions. A low background for the collimator system and the reflectometer is ensured by employing a tangential beam channel and an in-channel sapphire filter. The second section is the time-of-flight (TOF) system, which uses a double-disk neutron chopper followed by polarization elements, the sample environment and the neutron detector system. Monte Carlo simulations and neutron beamline intensity measurements are presented. The design considerations are adoptable for neutron sources where space is limited and sections of the instrument are in a high-radiation environment.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources\",\"authors\":\"Raul-Victor Erhan, Victor-Otto de Haan, Christoph Frommen, Kenneth Dahl Knudsen, Isabel Llamas-Jansa, Bjørn Christian Hauback\",\"doi\":\"10.3390/instruments8020030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of a time-of-flight neutron reflectometer proposed for the new generation of compact neutron sources is presented. The reflectometer offers the possibility to use spin-polarized neutrons. The reflectometer design presented here takes advantage of a cold neutron source and uses neutrons with wavelengths in the range of 2–15 Å for the unpolarized mode. In general, due to tight spatial restrictions and the need to avoid moving parts inside the beam channel, a multi-channel collimator guide and reflective neutron guide are used for the first section of the instrument. This enables definition of the desired wavelength band and easy selection of one out of three different Q-resolutions. A low background for the collimator system and the reflectometer is ensured by employing a tangential beam channel and an in-channel sapphire filter. The second section is the time-of-flight (TOF) system, which uses a double-disk neutron chopper followed by polarization elements, the sample environment and the neutron detector system. Monte Carlo simulations and neutron beamline intensity measurements are presented. The design considerations are adoptable for neutron sources where space is limited and sections of the instrument are in a high-radiation environment.\",\"PeriodicalId\":13582,\"journal\":{\"name\":\"Instruments\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments8020030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8020030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
介绍了为新一代紧凑型中子源设计的飞行时间中子反射仪。该反射仪可以使用自旋极化中子。本文介绍的反射仪设计利用了冷中子源的优势,在非偏振模式下使用波长范围为 2-15 Å 的中子。一般来说,由于空间上的严格限制和避免光束通道内移动部件的需要,仪器的第一部分使用了多通道准直器导轨和反射中子导轨。这样就可以定义所需的波长带,并从三种不同的 Q 值分辨率中轻松选择一种。通过采用切向光束通道和通道内蓝宝石滤波器,确保了准直器系统和反射仪的低背景。第二部分是飞行时间(TOF)系统,它使用双盘中子斩波器,然后是偏振元件、样品环境和中子探测器系统。介绍了蒙特卡罗模拟和中子束线强度测量。设计考虑因素可用于空间有限且仪器部分处于高辐射环境中的中子源。
A Concept for a Multipurpose Time-of-Flight Neutron Reflectometer at Compact Neutron Sources
The design of a time-of-flight neutron reflectometer proposed for the new generation of compact neutron sources is presented. The reflectometer offers the possibility to use spin-polarized neutrons. The reflectometer design presented here takes advantage of a cold neutron source and uses neutrons with wavelengths in the range of 2–15 Å for the unpolarized mode. In general, due to tight spatial restrictions and the need to avoid moving parts inside the beam channel, a multi-channel collimator guide and reflective neutron guide are used for the first section of the instrument. This enables definition of the desired wavelength band and easy selection of one out of three different Q-resolutions. A low background for the collimator system and the reflectometer is ensured by employing a tangential beam channel and an in-channel sapphire filter. The second section is the time-of-flight (TOF) system, which uses a double-disk neutron chopper followed by polarization elements, the sample environment and the neutron detector system. Monte Carlo simulations and neutron beamline intensity measurements are presented. The design considerations are adoptable for neutron sources where space is limited and sections of the instrument are in a high-radiation environment.