用绿茶提取物和氧化镁功能化的新型磁性纳米吸附剂去除水溶液中的亚甲基蓝:合成、表征和吸附行为

IF 2.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Magnetochemistry Pub Date : 2024-04-24 DOI:10.3390/magnetochemistry10050031
Wenchao Lin, Yaoyao Huang, Shuang Liu, Wei Ding, H. Li, Huaili Zheng
{"title":"用绿茶提取物和氧化镁功能化的新型磁性纳米吸附剂去除水溶液中的亚甲基蓝:合成、表征和吸附行为","authors":"Wenchao Lin, Yaoyao Huang, Shuang Liu, Wei Ding, H. Li, Huaili Zheng","doi":"10.3390/magnetochemistry10050031","DOIUrl":null,"url":null,"abstract":"In this study, a novel green tea/Mg-functionalized magnetic nano-adsorbent, denoted as GTE-MgO-Fe3O4 NPs, was developed and applied to the extraction of Methylene Blue (MB) from water-based solutions. The GTE-MgO-Fe3O4 NPs were synthesized by incorporating green tea extracts (GTE) and Mg species onto the surface of Fe3O4 nanoparticles using a hydrothermal method. Characterization analyses corroborated the successful functionalization of the Fe3O4 surface with GTE and Mg species, resulting in a superparamagnetic adsorbent equipped with abundant surface functional groups, which promoted MB adsorption and facilitated magnetic separation. Batch experiments revealed that different operating parameters had an impact on the adsorption behavior, such as adsorbent dosage, pH, coexisting ions, contact time, the initial MB concentration, and temperature. The investigations of adsorption kinetics and isotherms emphasized that the MB adsorption onto GTE-MgO-Fe3O4 NPs was an exothermic process dominated by chemisorption. The experimental adsorption capacity of GTE-MgO-Fe3O4 NPs for MB surpassed 174.93 mg g−1, markedly superior to the performance of numerous other adsorbents. Ultimately, the utilized GTE-MgO-Fe3O4 NPs could be effectively regenerated through acid pickling, retaining over 76% of its original adsorption capacity after six adsorption–desorption cycles, which suggested that GTE-MgO-Fe3O4 NPs was a suitable adsorbent for eliminating MB from effluent.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Magnetic Nano-Adsorbent Functionalized with Green Tea Extract and Magnesium Oxide to Remove Methylene Blue from Aqueous Solutions: Synthesis, Characterization, and Adsorption Behavior\",\"authors\":\"Wenchao Lin, Yaoyao Huang, Shuang Liu, Wei Ding, H. Li, Huaili Zheng\",\"doi\":\"10.3390/magnetochemistry10050031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel green tea/Mg-functionalized magnetic nano-adsorbent, denoted as GTE-MgO-Fe3O4 NPs, was developed and applied to the extraction of Methylene Blue (MB) from water-based solutions. The GTE-MgO-Fe3O4 NPs were synthesized by incorporating green tea extracts (GTE) and Mg species onto the surface of Fe3O4 nanoparticles using a hydrothermal method. Characterization analyses corroborated the successful functionalization of the Fe3O4 surface with GTE and Mg species, resulting in a superparamagnetic adsorbent equipped with abundant surface functional groups, which promoted MB adsorption and facilitated magnetic separation. Batch experiments revealed that different operating parameters had an impact on the adsorption behavior, such as adsorbent dosage, pH, coexisting ions, contact time, the initial MB concentration, and temperature. The investigations of adsorption kinetics and isotherms emphasized that the MB adsorption onto GTE-MgO-Fe3O4 NPs was an exothermic process dominated by chemisorption. The experimental adsorption capacity of GTE-MgO-Fe3O4 NPs for MB surpassed 174.93 mg g−1, markedly superior to the performance of numerous other adsorbents. Ultimately, the utilized GTE-MgO-Fe3O4 NPs could be effectively regenerated through acid pickling, retaining over 76% of its original adsorption capacity after six adsorption–desorption cycles, which suggested that GTE-MgO-Fe3O4 NPs was a suitable adsorbent for eliminating MB from effluent.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10050031\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10050031","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种新型的绿茶/镁功能化磁性纳米吸附剂(称为 GTE-MgO-Fe3O4 NPs),并将其应用于从水基溶液中萃取亚甲基蓝(MB)。GTE-MgO-Fe3O4 NPs 是通过水热法在 Fe3O4 纳米粒子表面加入绿茶提取物(GTE)和镁元素合成的。表征分析证实,绿茶萃取物和镁元素成功地将 Fe3O4 表面功能化,使其成为一种具有丰富表面官能团的超顺磁性吸附剂,从而促进了甲基溴的吸附并有助于磁性分离。批量实验表明,不同的操作参数会对吸附行为产生影响,如吸附剂用量、pH 值、共存离子、接触时间、甲基溴初始浓度和温度。对吸附动力学和等温线的研究表明,甲基溴在 GTE-MgO-Fe3O4 NPs 上的吸附是一个以化学吸附为主的放热过程。GTE-MgO-Fe3O4 NPs 对甲基溴的实验吸附容量超过 174.93 mg g-1,明显优于许多其他吸附剂。最终,所利用的 GTE-MgO-Fe3O4 NPs 可通过酸洗有效再生,经过六次吸附-解吸循环后,其原始吸附容量保持在 76% 以上,这表明 GTE-MgO-Fe3O4 NPs 是消除污水中甲基溴的合适吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Magnetic Nano-Adsorbent Functionalized with Green Tea Extract and Magnesium Oxide to Remove Methylene Blue from Aqueous Solutions: Synthesis, Characterization, and Adsorption Behavior
In this study, a novel green tea/Mg-functionalized magnetic nano-adsorbent, denoted as GTE-MgO-Fe3O4 NPs, was developed and applied to the extraction of Methylene Blue (MB) from water-based solutions. The GTE-MgO-Fe3O4 NPs were synthesized by incorporating green tea extracts (GTE) and Mg species onto the surface of Fe3O4 nanoparticles using a hydrothermal method. Characterization analyses corroborated the successful functionalization of the Fe3O4 surface with GTE and Mg species, resulting in a superparamagnetic adsorbent equipped with abundant surface functional groups, which promoted MB adsorption and facilitated magnetic separation. Batch experiments revealed that different operating parameters had an impact on the adsorption behavior, such as adsorbent dosage, pH, coexisting ions, contact time, the initial MB concentration, and temperature. The investigations of adsorption kinetics and isotherms emphasized that the MB adsorption onto GTE-MgO-Fe3O4 NPs was an exothermic process dominated by chemisorption. The experimental adsorption capacity of GTE-MgO-Fe3O4 NPs for MB surpassed 174.93 mg g−1, markedly superior to the performance of numerous other adsorbents. Ultimately, the utilized GTE-MgO-Fe3O4 NPs could be effectively regenerated through acid pickling, retaining over 76% of its original adsorption capacity after six adsorption–desorption cycles, which suggested that GTE-MgO-Fe3O4 NPs was a suitable adsorbent for eliminating MB from effluent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Magnetochemistry
Magnetochemistry Chemistry-Chemistry (miscellaneous)
CiteScore
3.90
自引率
11.10%
发文量
145
审稿时长
11 weeks
期刊介绍: Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Band Structure Calculations, Magnetic Properties and Magnetocaloric Effect of GdCo1.8M0.2 Compounds with M = Fe, Mn, Cu, Al Magnetic Substrates for Tissue Engineering—A Review Impact of the Different Molecular Weights of Polyethylene Glycol (PEG) Coating Agents on the Magnetic Targeting Characteristics of Functionalized Magnetoresponsive Nanoclusters Magnon Excitation Modes in Ferromagnetic and Antiferromagnetic Systems Synergistic Effect of Magnetic Iron Oxide Nanoparticles with Medicinal Plant Extracts against Resistant Bacterial Strains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1