{"title":"使用电子束焊接 Q690 贝氏体钢的微观结构和氢脆现象","authors":"Pengcong Yang, Kuijun Fu, Yumin Wu, Jiaji Wang, Fengya Hu, Yulai Song","doi":"10.1007/s40194-024-01770-0","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation focused on the welding of Q690 bainitic steel using vacuum electron beam welding with currents of 350 and 500 mA, yielding samples with diverse microstructures and distinct fusion and heat-affected zones. Additionally, H<sub>2</sub>S immersion tests were conducted to evaluate the susceptibility of the welded microstructure to hydrogen embrittlement. The results indicated different fracture sites in the samples welded under currents of 350 and 500 mA. Under the 350-mA welding current, fracture occurred in the coarse-grain heat-affected zone (CGHAZ) because of the high dislocation density in the bainitic ferrite plates and the low concentration of retained austenite in the CGHAZ. Under the 500-mA current, hydrogen embrittlement and fracture occurred in the upper bainite of the fusion zone because of the high welding-induced heat input that led to coarse precipitation and micro-void coalescence.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 8","pages":"2103 - 2108"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and hydrogen embrittlement of Q690 bainitic steel welded using electron beam\",\"authors\":\"Pengcong Yang, Kuijun Fu, Yumin Wu, Jiaji Wang, Fengya Hu, Yulai Song\",\"doi\":\"10.1007/s40194-024-01770-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This investigation focused on the welding of Q690 bainitic steel using vacuum electron beam welding with currents of 350 and 500 mA, yielding samples with diverse microstructures and distinct fusion and heat-affected zones. Additionally, H<sub>2</sub>S immersion tests were conducted to evaluate the susceptibility of the welded microstructure to hydrogen embrittlement. The results indicated different fracture sites in the samples welded under currents of 350 and 500 mA. Under the 350-mA welding current, fracture occurred in the coarse-grain heat-affected zone (CGHAZ) because of the high dislocation density in the bainitic ferrite plates and the low concentration of retained austenite in the CGHAZ. Under the 500-mA current, hydrogen embrittlement and fracture occurred in the upper bainite of the fusion zone because of the high welding-induced heat input that led to coarse precipitation and micro-void coalescence.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"68 8\",\"pages\":\"2103 - 2108\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01770-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01770-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
这项研究的重点是使用电流分别为 350 mA 和 500 mA 的真空电子束焊接 Q690 贝氏体钢,焊接出的样品具有不同的微观结构以及明显的熔合区和热影响区。此外,还进行了 H2S 浸入试验,以评估焊接微观结构对氢脆的敏感性。结果表明,在 350 mA 和 500 mA 电流下焊接的样品具有不同的断裂部位。在 350 毫安的焊接电流下,断裂发生在粗晶粒热影响区(CGHAZ),这是因为贝氏体铁素体板中的位错密度高,而 CGHAZ 中保留奥氏体的浓度低。在 500 mA 电流下,熔合区上部贝氏体发生氢脆和断裂,原因是高焊接诱导热输入导致粗大析出和微空洞凝聚。
Microstructure and hydrogen embrittlement of Q690 bainitic steel welded using electron beam
This investigation focused on the welding of Q690 bainitic steel using vacuum electron beam welding with currents of 350 and 500 mA, yielding samples with diverse microstructures and distinct fusion and heat-affected zones. Additionally, H2S immersion tests were conducted to evaluate the susceptibility of the welded microstructure to hydrogen embrittlement. The results indicated different fracture sites in the samples welded under currents of 350 and 500 mA. Under the 350-mA welding current, fracture occurred in the coarse-grain heat-affected zone (CGHAZ) because of the high dislocation density in the bainitic ferrite plates and the low concentration of retained austenite in the CGHAZ. Under the 500-mA current, hydrogen embrittlement and fracture occurred in the upper bainite of the fusion zone because of the high welding-induced heat input that led to coarse precipitation and micro-void coalescence.
期刊介绍:
The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.