{"title":"用于遥感场景分类的自我监督学习的进展:当前创新与未来展望","authors":"José Gabriel Carrasco Ramírez","doi":"10.60087/jaigs.vol4.issue1.p56","DOIUrl":null,"url":null,"abstract":"Deep learning methodologies have significantly advanced the fields of computer vision and machine learning, enhancing performance across various tasks like classification, regression, and detection. In remote sensing for Earth observation, deep neural networks have propelled state-of-the-art results. However, a major drawback is their dependence on large annotated datasets, necessitating extensive human effort, especially in specialized domains like medical imaging or remote sensing. To mitigate this reliance on annotations, several self-supervised representation learning techniques have emerged, aiming to learn unsupervised image representations applicable to downstream tasks such as image classification, object detection, or semantic segmentation. Consequently, self-supervised learning approaches have gained traction in remote sensing. This article surveys the foundational principles of various self-supervised methods, focusing on scene classification tasks. We elucidate key contributions, analyze experimental setups, and synthesize findings from each study. Furthermore, we conduct comprehensive experiments on two public scene classification datasets to evaluate and benchmark different self-supervised models","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"75 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Self-Supervised Learning for Remote Sensing Scene Classification: Present Innovations and Future Outlooks\",\"authors\":\"José Gabriel Carrasco Ramírez\",\"doi\":\"10.60087/jaigs.vol4.issue1.p56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning methodologies have significantly advanced the fields of computer vision and machine learning, enhancing performance across various tasks like classification, regression, and detection. In remote sensing for Earth observation, deep neural networks have propelled state-of-the-art results. However, a major drawback is their dependence on large annotated datasets, necessitating extensive human effort, especially in specialized domains like medical imaging or remote sensing. To mitigate this reliance on annotations, several self-supervised representation learning techniques have emerged, aiming to learn unsupervised image representations applicable to downstream tasks such as image classification, object detection, or semantic segmentation. Consequently, self-supervised learning approaches have gained traction in remote sensing. This article surveys the foundational principles of various self-supervised methods, focusing on scene classification tasks. We elucidate key contributions, analyze experimental setups, and synthesize findings from each study. Furthermore, we conduct comprehensive experiments on two public scene classification datasets to evaluate and benchmark different self-supervised models\",\"PeriodicalId\":517201,\"journal\":{\"name\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"volume\":\"75 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60087/jaigs.vol4.issue1.p56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.vol4.issue1.p56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advancements in Self-Supervised Learning for Remote Sensing Scene Classification: Present Innovations and Future Outlooks
Deep learning methodologies have significantly advanced the fields of computer vision and machine learning, enhancing performance across various tasks like classification, regression, and detection. In remote sensing for Earth observation, deep neural networks have propelled state-of-the-art results. However, a major drawback is their dependence on large annotated datasets, necessitating extensive human effort, especially in specialized domains like medical imaging or remote sensing. To mitigate this reliance on annotations, several self-supervised representation learning techniques have emerged, aiming to learn unsupervised image representations applicable to downstream tasks such as image classification, object detection, or semantic segmentation. Consequently, self-supervised learning approaches have gained traction in remote sensing. This article surveys the foundational principles of various self-supervised methods, focusing on scene classification tasks. We elucidate key contributions, analyze experimental setups, and synthesize findings from each study. Furthermore, we conduct comprehensive experiments on two public scene classification datasets to evaluate and benchmark different self-supervised models