利用机器学习算法预测抗生素耐药性

Bharathi A
{"title":"利用机器学习算法预测抗生素耐药性","authors":"Bharathi A","doi":"10.55041/isjem01501","DOIUrl":null,"url":null,"abstract":"Opioid Risk Antibiotics Resistance abuse, overdose, and drug addiction have become public health concerns as a result of the notable increase in the use of both prescribed and over-the-counter medications in the United States. The growing incidence of opioid usage presents a complex public health issue, one of which is the possible influence on antibiotic resistance. The existing system predicts antibiotic resistance profiles in bacterial infections among hospitalized patients using machine learning (ML) algorithms and electronic medical records (EMRs). However, it ignores the impact of opioid use, a major public health issue that may be connected to antibiotic resistance. The complex association between opioid-related behaviors and antibiotic resistance may not be adequately captured by powerful machine learning algorithms, despite their use. The larger context of antibiotic resistance patterns is limited by the lack of linkage with data on opioid intake. The proposed abstract aims to improve predictive accuracy and understanding of the complex factors influencing antibiotic resistance emergence by integrating support vector machines (SVM) and linear regression to thoroughly analyse the relationship between opioid risk and antibiotic resistance. This approach addresses these limitations. We suggested combining linear regression and support vector machines (SVM) to better understand the complex connection between opioid risk and antibiotic resistance. In order to pinpoint the main causes of increased risk, trends in opioid consumption data are analyzed using the SVM model. In parallel, the relationship between opioid abuse and the rise in antibiotic resistance is examined using linear regression. Our goal is to have a thorough grasp of the complex relationship between opioid-related behaviors and the emergence of antibiotic resistance by combining these two analytical approaches. This project is designed under NetBeans with java as front end. Weka tool for machine learning analysis Keywords: Antibiotic Resistance, Machine Learning, Bacterial Infections, Global Crisis, Healthcare.","PeriodicalId":285811,"journal":{"name":"International Scientific Journal of Engineering and Management","volume":"12 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANTIBIOTICS RESISTANCE PREDICTION USING MACHINE LEARNING ALGORITHMS\",\"authors\":\"Bharathi A\",\"doi\":\"10.55041/isjem01501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opioid Risk Antibiotics Resistance abuse, overdose, and drug addiction have become public health concerns as a result of the notable increase in the use of both prescribed and over-the-counter medications in the United States. The growing incidence of opioid usage presents a complex public health issue, one of which is the possible influence on antibiotic resistance. The existing system predicts antibiotic resistance profiles in bacterial infections among hospitalized patients using machine learning (ML) algorithms and electronic medical records (EMRs). However, it ignores the impact of opioid use, a major public health issue that may be connected to antibiotic resistance. The complex association between opioid-related behaviors and antibiotic resistance may not be adequately captured by powerful machine learning algorithms, despite their use. The larger context of antibiotic resistance patterns is limited by the lack of linkage with data on opioid intake. The proposed abstract aims to improve predictive accuracy and understanding of the complex factors influencing antibiotic resistance emergence by integrating support vector machines (SVM) and linear regression to thoroughly analyse the relationship between opioid risk and antibiotic resistance. This approach addresses these limitations. We suggested combining linear regression and support vector machines (SVM) to better understand the complex connection between opioid risk and antibiotic resistance. In order to pinpoint the main causes of increased risk, trends in opioid consumption data are analyzed using the SVM model. In parallel, the relationship between opioid abuse and the rise in antibiotic resistance is examined using linear regression. Our goal is to have a thorough grasp of the complex relationship between opioid-related behaviors and the emergence of antibiotic resistance by combining these two analytical approaches. This project is designed under NetBeans with java as front end. Weka tool for machine learning analysis Keywords: Antibiotic Resistance, Machine Learning, Bacterial Infections, Global Crisis, Healthcare.\",\"PeriodicalId\":285811,\"journal\":{\"name\":\"International Scientific Journal of Engineering and Management\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Scientific Journal of Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/isjem01501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scientific Journal of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/isjem01501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿片类药物风险 抗生素耐药性滥用、用药过量和药物成瘾已成为美国公众健康关注的问题,这是因为美国处方药和非处方药的使用明显增加。阿片类药物使用率的增长带来了一个复杂的公共卫生问题,其中之一就是可能对抗生素耐药性产生的影响。现有系统利用机器学习(ML)算法和电子病历(EMR)预测住院患者细菌感染的抗生素耐药性概况。然而,该系统忽略了阿片类药物使用的影响,而阿片类药物使用是一个重大的公共卫生问题,可能与抗生素耐药性有关。尽管使用了强大的机器学习算法,但阿片类药物相关行为与抗生素耐药性之间的复杂关联可能无法被充分捕捉。由于缺乏与阿片类药物摄入数据的联系,抗生素耐药性模式的大背景受到了限制。本摘要旨在通过整合支持向量机(SVM)和线性回归,全面分析阿片类药物风险与抗生素耐药性之间的关系,从而提高预测准确性,并加深对影响抗生素耐药性产生的复杂因素的理解。这种方法解决了这些局限性。我们建议将线性回归与支持向量机(SVM)相结合,以更好地理解阿片类药物风险与抗生素耐药性之间的复杂联系。为了找出风险增加的主要原因,我们使用 SVM 模型分析了阿片类药物消费数据的趋势。与此同时,还使用线性回归分析了阿片类药物滥用与抗生素耐药性上升之间的关系。我们的目标是通过结合这两种分析方法,全面掌握阿片类药物相关行为与抗生素耐药性出现之间的复杂关系。本项目在 NetBeans 下设计,前端使用 java。用于机器学习分析的 Weka 工具 关键词抗生素耐药性、机器学习、细菌感染、全球危机、医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANTIBIOTICS RESISTANCE PREDICTION USING MACHINE LEARNING ALGORITHMS
Opioid Risk Antibiotics Resistance abuse, overdose, and drug addiction have become public health concerns as a result of the notable increase in the use of both prescribed and over-the-counter medications in the United States. The growing incidence of opioid usage presents a complex public health issue, one of which is the possible influence on antibiotic resistance. The existing system predicts antibiotic resistance profiles in bacterial infections among hospitalized patients using machine learning (ML) algorithms and electronic medical records (EMRs). However, it ignores the impact of opioid use, a major public health issue that may be connected to antibiotic resistance. The complex association between opioid-related behaviors and antibiotic resistance may not be adequately captured by powerful machine learning algorithms, despite their use. The larger context of antibiotic resistance patterns is limited by the lack of linkage with data on opioid intake. The proposed abstract aims to improve predictive accuracy and understanding of the complex factors influencing antibiotic resistance emergence by integrating support vector machines (SVM) and linear regression to thoroughly analyse the relationship between opioid risk and antibiotic resistance. This approach addresses these limitations. We suggested combining linear regression and support vector machines (SVM) to better understand the complex connection between opioid risk and antibiotic resistance. In order to pinpoint the main causes of increased risk, trends in opioid consumption data are analyzed using the SVM model. In parallel, the relationship between opioid abuse and the rise in antibiotic resistance is examined using linear regression. Our goal is to have a thorough grasp of the complex relationship between opioid-related behaviors and the emergence of antibiotic resistance by combining these two analytical approaches. This project is designed under NetBeans with java as front end. Weka tool for machine learning analysis Keywords: Antibiotic Resistance, Machine Learning, Bacterial Infections, Global Crisis, Healthcare.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
International trade and performance of firms- Trade dynamics of import export and productivity Effect Of Jeera Powder on the Sensory Attribute Of Carbonated RTS Functional Millet Based Whey Beverage Impact of Artificial Intelligence on Marketing strategies with reference to MNCs ANALYSIS OF INTERNATIONAL TRADE IN INDIA POST COVID-19 Tax Implications of Real Estate Investments: A Comprehensive Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1