Wiko Setyonegoro, Aditya Riadi Gusman, Muhammad Hanif, Telly Kurniawan, Sri Ardhyastuti, Muhamad Mahfud Muqoddas, Mamoru Nakamura, Purna Sulastya Putra, Semeidi Husrin, Nuraini Rahma Hanifa, Septriono Hari Nugroho, Evie Hadrijantie Sudjono, Titi Anggono, Febty Febriani, Pepen Supendi, Mohamad Ramdhan, Agustya Adi Martha, Adrin Tohari, Iyan Turyana
{"title":"印度尼西亚帕拉布汉拉图湾地震和山体滑坡源海啸潜在危害的典型情况","authors":"Wiko Setyonegoro, Aditya Riadi Gusman, Muhammad Hanif, Telly Kurniawan, Sri Ardhyastuti, Muhamad Mahfud Muqoddas, Mamoru Nakamura, Purna Sulastya Putra, Semeidi Husrin, Nuraini Rahma Hanifa, Septriono Hari Nugroho, Evie Hadrijantie Sudjono, Titi Anggono, Febty Febriani, Pepen Supendi, Mohamad Ramdhan, Agustya Adi Martha, Adrin Tohari, Iyan Turyana","doi":"10.1007/s00024-024-03483-3","DOIUrl":null,"url":null,"abstract":"<div><p>Traces of past landslides were found on the seabed of Palabuhanratu Bay, West Java. This landslide is thought to have generated a tsunami, but has never been investigated before. This bay is located around the western part of the Cimandiri Fault which is an active horizontal fault with a length of 100 km. Therefore, it is necessary to study the potential impact of a tsunami in the Palabuhanratu Bay area caused by a combination of local earthquakes and underwater landslides around the bay. Evidence of past landslides was revealed through side-scan sonar data from the underwater research vessel Baruna Jaya IV in Palabuhanratu Bay, Indonesia, in 2020. The data from this survey provides evidence of debris flows (historical landslide data) at the survey site. We simulated 29 tsunami scenarios from combined landslide earthquake sources by solving shallow water nonlinear equations numerically. Tsunami sources from earthquakes are classified into three types, e.g., land faults, sea faults, and combinations of land and sea faults. While the source of the tsunami from the landslide is divided by volume. Combination of the earthquake magnitudes range from M6.80 to M7.85, and the landslide volume ranged from 3.06 × 10<sup>5</sup> m<sup>3</sup> to 2.5 × 10<sup>8</sup> m<sup>3</sup>. This study concludes that in our scenario, the M8.12 type T7 earthquake generates the largest tsunami in the study area, followed by the T6L5 scenario with M7.85 from the Cimandiri Fault and landslide with a total volume of 2.5 × 10<sup>8</sup> m<sup>3</sup>.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 5","pages":"1381 - 1412"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typical of Tsunami Hazard Potential from Earthquake and Landslide Sources in Palabuhanratu Bay, Indonesia\",\"authors\":\"Wiko Setyonegoro, Aditya Riadi Gusman, Muhammad Hanif, Telly Kurniawan, Sri Ardhyastuti, Muhamad Mahfud Muqoddas, Mamoru Nakamura, Purna Sulastya Putra, Semeidi Husrin, Nuraini Rahma Hanifa, Septriono Hari Nugroho, Evie Hadrijantie Sudjono, Titi Anggono, Febty Febriani, Pepen Supendi, Mohamad Ramdhan, Agustya Adi Martha, Adrin Tohari, Iyan Turyana\",\"doi\":\"10.1007/s00024-024-03483-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traces of past landslides were found on the seabed of Palabuhanratu Bay, West Java. This landslide is thought to have generated a tsunami, but has never been investigated before. This bay is located around the western part of the Cimandiri Fault which is an active horizontal fault with a length of 100 km. Therefore, it is necessary to study the potential impact of a tsunami in the Palabuhanratu Bay area caused by a combination of local earthquakes and underwater landslides around the bay. Evidence of past landslides was revealed through side-scan sonar data from the underwater research vessel Baruna Jaya IV in Palabuhanratu Bay, Indonesia, in 2020. The data from this survey provides evidence of debris flows (historical landslide data) at the survey site. We simulated 29 tsunami scenarios from combined landslide earthquake sources by solving shallow water nonlinear equations numerically. Tsunami sources from earthquakes are classified into three types, e.g., land faults, sea faults, and combinations of land and sea faults. While the source of the tsunami from the landslide is divided by volume. Combination of the earthquake magnitudes range from M6.80 to M7.85, and the landslide volume ranged from 3.06 × 10<sup>5</sup> m<sup>3</sup> to 2.5 × 10<sup>8</sup> m<sup>3</sup>. This study concludes that in our scenario, the M8.12 type T7 earthquake generates the largest tsunami in the study area, followed by the T6L5 scenario with M7.85 from the Cimandiri Fault and landslide with a total volume of 2.5 × 10<sup>8</sup> m<sup>3</sup>.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"181 5\",\"pages\":\"1381 - 1412\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03483-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03483-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Typical of Tsunami Hazard Potential from Earthquake and Landslide Sources in Palabuhanratu Bay, Indonesia
Traces of past landslides were found on the seabed of Palabuhanratu Bay, West Java. This landslide is thought to have generated a tsunami, but has never been investigated before. This bay is located around the western part of the Cimandiri Fault which is an active horizontal fault with a length of 100 km. Therefore, it is necessary to study the potential impact of a tsunami in the Palabuhanratu Bay area caused by a combination of local earthquakes and underwater landslides around the bay. Evidence of past landslides was revealed through side-scan sonar data from the underwater research vessel Baruna Jaya IV in Palabuhanratu Bay, Indonesia, in 2020. The data from this survey provides evidence of debris flows (historical landslide data) at the survey site. We simulated 29 tsunami scenarios from combined landslide earthquake sources by solving shallow water nonlinear equations numerically. Tsunami sources from earthquakes are classified into three types, e.g., land faults, sea faults, and combinations of land and sea faults. While the source of the tsunami from the landslide is divided by volume. Combination of the earthquake magnitudes range from M6.80 to M7.85, and the landslide volume ranged from 3.06 × 105 m3 to 2.5 × 108 m3. This study concludes that in our scenario, the M8.12 type T7 earthquake generates the largest tsunami in the study area, followed by the T6L5 scenario with M7.85 from the Cimandiri Fault and landslide with a total volume of 2.5 × 108 m3.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.