Bettina Eck-Varanka, Katalin Hubai, Nora Kováts, Gábor Teke
{"title":"利用常见的烹饪香草对家庭厨房中的多环芳烃含量进行生物监测","authors":"Bettina Eck-Varanka, Katalin Hubai, Nora Kováts, Gábor Teke","doi":"10.1007/s40201-024-00898-x","DOIUrl":null,"url":null,"abstract":"<div><p>Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 1","pages":"295 - 303"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40201-024-00898-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomonitoring polycyclic aromatic hydrocarbon levels in domestic kitchens using commonly grown culinary herbs\",\"authors\":\"Bettina Eck-Varanka, Katalin Hubai, Nora Kováts, Gábor Teke\",\"doi\":\"10.1007/s40201-024-00898-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 1\",\"pages\":\"295 - 303\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40201-024-00898-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-024-00898-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00898-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Biomonitoring polycyclic aromatic hydrocarbon levels in domestic kitchens using commonly grown culinary herbs
Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene