人发纤维增强改性环氧化大豆油基复合材料的理化性能研究

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Surface and Interface Analysis Pub Date : 2024-04-22 DOI:10.1002/sia.7312
Gitashree Gogoi, Pragya Banerjee, T. K. Maji
{"title":"人发纤维增强改性环氧化大豆油基复合材料的理化性能研究","authors":"Gitashree Gogoi, Pragya Banerjee, T. K. Maji","doi":"10.1002/sia.7312","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the physicochemical properties of human hair fiber‐reinforced modified epoxidized soybean oil‐based composites\",\"authors\":\"Gitashree Gogoi, Pragya Banerjee, T. K. Maji\",\"doi\":\"10.1002/sia.7312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7312\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7312","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了纤维表面处理对头发纤维增强复合材料各种性能的影响。采用压缩成型技术制备了人发纤维增强改性环氧化大豆油基复合材料。使用三种不同浓度的盐酸溶液(分别为 0.25%、0.75% 和 1%)对头发纤维进行酸处理,以提高纤维与基体之间的粘附性。使用甲基丙烯酸和甲基丙烯酸酐对环氧化大豆油进行改性,形成甲基丙烯酸酐改性环氧化大豆油。制备了松香酸衍生物(一种刚性共聚单体),并将其用作交联剂。傅立叶变换红外光谱法用于研究复合材料各组分之间的相互作用。对各种性能,即机械性能、热性能、阻燃性能和耐化学性能进行了检测。对复合材料的断裂表面进行了扫描电子显微镜观察,以检查其形态。用 0.75% 的盐酸处理过的毛发纤维在所有性能方面都得到了最大程度的改善,可在各种复合材料中用作结构应用的增强材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the physicochemical properties of human hair fiber‐reinforced modified epoxidized soybean oil‐based composites
This paper investigates the effect of fiber surface treatment on various properties of hair fiber reinforced composites. Human hair fiber reinforced modified epoxidized soybean oil based composites were prepared by compression molding technique. Acid treatment of hair fibers was carried out by using three different concentrations of HCl solution (0.25%, 0.75%, and 1%, respectively) in order to achieve improvement in adhesion between the fiber and the matrix. Epoxidized soybean oil was modified using methacrylic acid and methacrylic anhydride to form methacrylic anhydride modified epoxidized soybean oil. Rosin acid derivative (a rigid comonomer) was prepared and used as a crosslinker. Fourier‐transform infrared spectroscopy was carried out to study the interaction among the components of the composites. Various properties, namely, mechanical, thermal, flame resistance, and chemical resistance were checked. Scanning electron microscopy of the fractured surface of the composites was carried out to examine the morphologies. Hair fibers treated with 0.75% of HCl showed maximum improvement in all the properties and could be employed as reinforcement in various composites to be used for structural applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
期刊最新文献
Effect of Surface Dissolution on the Floatability of Brucite in Three Anionic Collector Systems Preparation and Properties of Mo/Ti/Sn Conductivity Conversion Coatings on 6063 Aluminum Alloy Nanosilicon Stabilized With Ligands: Effect of High‐Energy Proton Beam on Luminescent Properties Structural Analysis and Electrical Property of Acid‐Treated MWCNT Combined Experimental and Periodic DFT Study of the Size Dependence of Adsorption Properties of Oxide‐Supported Metal Nanoclusters: A Case of NO on Ni/Al2O3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1