波浪依赖机制对三种极端天气系统期间风暴潮和海流模拟的影响

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2024-04-22 DOI:10.1175/jpo-d-23-0190.1
Dongxue Mo, Po Hu, Jian Li, Yijun Hou, Shuiqing Li
{"title":"波浪依赖机制对三种极端天气系统期间风暴潮和海流模拟的影响","authors":"Dongxue Mo, Po Hu, Jian Li, Yijun Hou, Shuiqing Li","doi":"10.1175/jpo-d-23-0190.1","DOIUrl":null,"url":null,"abstract":"\nThe wave effect is crucial to coastal ocean dynamics, but the roles of the associated wave-dependent mechanisms, such as the wave-enhanced surface stress, wave-enhanced bottom stress, and three-dimensional wave force, are not yet fully understood. In addition, the parameterizations of each mechanism vary and need to be assessed. In this study, a coupled wave-current model based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model system was established to identify the effect of the wave-dependent mechanism on storm surges and currents during three typical extreme weather systems, i.e., cold wave, extratropical cyclone, and typhoon systems, in a semi-enclosed sea. The effects of the three coupled mechanisms on the surface or bottom stress, in terms of both the magnitude and direction, were investigated and quantified separately based on numerical sensitive analysis. A total of seven parameterizations is used to evaluate these mechanisms, resulting in significant variations in the storm surge and current vectors. The similarities and differences of the wave-induced surge and wave-induced current among the various mechanisms were summarized. The change in the surface stress and bottom stress and the excessive momentum flux due to waves were found to mainly occur in shallow nearshore regions. Optimal choice of the combination of parameterization schemes was obtained through comparison with measured data. The wave-induced current in the open waters with a deep-water depth and complex terrain could generate cyclonic or anticyclonic current vorticities, the number and intensity of which always increased with the enhanced strength and rotation of the wind field increased.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of wave-dependent mechanisms on storm surge and current simulation during three extreme weather systems\",\"authors\":\"Dongxue Mo, Po Hu, Jian Li, Yijun Hou, Shuiqing Li\",\"doi\":\"10.1175/jpo-d-23-0190.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nThe wave effect is crucial to coastal ocean dynamics, but the roles of the associated wave-dependent mechanisms, such as the wave-enhanced surface stress, wave-enhanced bottom stress, and three-dimensional wave force, are not yet fully understood. In addition, the parameterizations of each mechanism vary and need to be assessed. In this study, a coupled wave-current model based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model system was established to identify the effect of the wave-dependent mechanism on storm surges and currents during three typical extreme weather systems, i.e., cold wave, extratropical cyclone, and typhoon systems, in a semi-enclosed sea. The effects of the three coupled mechanisms on the surface or bottom stress, in terms of both the magnitude and direction, were investigated and quantified separately based on numerical sensitive analysis. A total of seven parameterizations is used to evaluate these mechanisms, resulting in significant variations in the storm surge and current vectors. The similarities and differences of the wave-induced surge and wave-induced current among the various mechanisms were summarized. The change in the surface stress and bottom stress and the excessive momentum flux due to waves were found to mainly occur in shallow nearshore regions. Optimal choice of the combination of parameterization schemes was obtained through comparison with measured data. The wave-induced current in the open waters with a deep-water depth and complex terrain could generate cyclonic or anticyclonic current vorticities, the number and intensity of which always increased with the enhanced strength and rotation of the wind field increased.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0190.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0190.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

波浪效应对沿岸海洋动力学至关重要,但与波浪有关的机制,如波浪增强的表 面应力、波浪增强的海底应力和三维波浪力等,其作用尚未完全清楚。此外,每种机制的参数也各不相同,需要进行评估。本研究建立了基于海洋-大气-波浪-沉积物耦合传输(COAWST)模式系统的波流耦合模式,以确定在半封闭海域的三种典型极端天气系统(即寒潮、副热带气旋和台风系统)中,波浪相关机制对风暴潮和海流的影响。在数值敏感分析的基础上,分别研究和量化了三种耦合机制对海面或海底应力的大小和方向的影响。在评估这些机制时,共使用了七种参数设置,从而导致风暴潮和海流矢量的显著变化。总结了各种机制下波浪引起的浪涌和波浪引起的海流的异同。发现波浪引起的表面应力和底部应力变化以及过大的动量通量主要发生在近岸浅水区域。通过与实测数据的比较,得出了参数化方案组合的最佳选择。在水深较深且地形复杂的开阔水域,波浪诱导的海流可产生旋涡或反旋涡,其数量和强度总是随着风场强度的增强和旋转的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of wave-dependent mechanisms on storm surge and current simulation during three extreme weather systems
The wave effect is crucial to coastal ocean dynamics, but the roles of the associated wave-dependent mechanisms, such as the wave-enhanced surface stress, wave-enhanced bottom stress, and three-dimensional wave force, are not yet fully understood. In addition, the parameterizations of each mechanism vary and need to be assessed. In this study, a coupled wave-current model based on the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model system was established to identify the effect of the wave-dependent mechanism on storm surges and currents during three typical extreme weather systems, i.e., cold wave, extratropical cyclone, and typhoon systems, in a semi-enclosed sea. The effects of the three coupled mechanisms on the surface or bottom stress, in terms of both the magnitude and direction, were investigated and quantified separately based on numerical sensitive analysis. A total of seven parameterizations is used to evaluate these mechanisms, resulting in significant variations in the storm surge and current vectors. The similarities and differences of the wave-induced surge and wave-induced current among the various mechanisms were summarized. The change in the surface stress and bottom stress and the excessive momentum flux due to waves were found to mainly occur in shallow nearshore regions. Optimal choice of the combination of parameterization schemes was obtained through comparison with measured data. The wave-induced current in the open waters with a deep-water depth and complex terrain could generate cyclonic or anticyclonic current vorticities, the number and intensity of which always increased with the enhanced strength and rotation of the wind field increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon Strait The eastern Mediterranean boundary current: seasonality, stability, and spiral formation Tidal conversion into vertical normal modes by near-critical topography An overlooked component of the meridional overturning circulation Models of the sea-surface height expression of the internal-wave continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1