用于无损检测应用的 0.36BiScO3-0.64PbTiO3/Epoxy 1-3-2 高温复合超声波传感器。

Juan Zhang;Chenxue Hou;Tian-Long Zhao;Kefei Shi;Yi Li;Yecheng Wang;Mengqing Zhou;Xinhao Sun;Yi Quan;Zhaoxi Li;Yintang Yang;Chunlong Fei
{"title":"用于无损检测应用的 0.36BiScO3-0.64PbTiO3/Epoxy 1-3-2 高温复合超声波传感器。","authors":"Juan Zhang;Chenxue Hou;Tian-Long Zhao;Kefei Shi;Yi Li;Yecheng Wang;Mengqing Zhou;Xinhao Sun;Yi Quan;Zhaoxi Li;Yintang Yang;Chunlong Fei","doi":"10.1109/TUFFC.2024.3388552","DOIUrl":null,"url":null,"abstract":"The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which is preferred piezoelectric materials at \n<inline-formula> <tex-math>$200~^{\\circ }$ </tex-math></inline-formula>\nC–\n<inline-formula> <tex-math>$300~^{\\circ }$ </tex-math></inline-formula>\nC, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From \n<inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>\nC to \n<inline-formula> <tex-math>$250~^{\\circ }$ </tex-math></inline-formula>\nC, 1-3-2 composites show a higher electromechanical coupling coefficient \n<inline-formula> <tex-math>${k}_{t}$ </tex-math></inline-formula>\n especially at high temperatures (~0.53 at \n<inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>\nC and ~0.64 at \n<inline-formula> <tex-math>$250~^{\\circ }$ </tex-math></inline-formula>\nC) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to \n<inline-formula> <tex-math>$250~^{\\circ }$ </tex-math></inline-formula>\nC and remains stable (\n<inline-formula> <tex-math>${V}_{\\text {pp}}~\\sim 500$ </tex-math></inline-formula>\n mV) below \n<inline-formula> <tex-math>$150~^{\\circ }$ </tex-math></inline-formula>\nC, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103% at \n<inline-formula> <tex-math>$250~^{\\circ }$ </tex-math></inline-formula>\nC) compared with that of monolithic BSPT HTUTs (~30% at \n<inline-formula> <tex-math>$250~^{\\circ }$ </tex-math></inline-formula>\nC). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block was performed, showing the potential for high-temperature NDT applications.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 6","pages":"638-647"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"0.36BiScO3-0.64PbTiO3/Epoxy 1-3-2 High- Temperature Composite Ultrasonic Transducer for Nondestructive Testing Applications\",\"authors\":\"Juan Zhang;Chenxue Hou;Tian-Long Zhao;Kefei Shi;Yi Li;Yecheng Wang;Mengqing Zhou;Xinhao Sun;Yi Quan;Zhaoxi Li;Yintang Yang;Chunlong Fei\",\"doi\":\"10.1109/TUFFC.2024.3388552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which is preferred piezoelectric materials at \\n<inline-formula> <tex-math>$200~^{\\\\circ }$ </tex-math></inline-formula>\\nC–\\n<inline-formula> <tex-math>$300~^{\\\\circ }$ </tex-math></inline-formula>\\nC, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From \\n<inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>\\nC to \\n<inline-formula> <tex-math>$250~^{\\\\circ }$ </tex-math></inline-formula>\\nC, 1-3-2 composites show a higher electromechanical coupling coefficient \\n<inline-formula> <tex-math>${k}_{t}$ </tex-math></inline-formula>\\n especially at high temperatures (~0.53 at \\n<inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>\\nC and ~0.64 at \\n<inline-formula> <tex-math>$250~^{\\\\circ }$ </tex-math></inline-formula>\\nC) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to \\n<inline-formula> <tex-math>$250~^{\\\\circ }$ </tex-math></inline-formula>\\nC and remains stable (\\n<inline-formula> <tex-math>${V}_{\\\\text {pp}}~\\\\sim 500$ </tex-math></inline-formula>\\n mV) below \\n<inline-formula> <tex-math>$150~^{\\\\circ }$ </tex-math></inline-formula>\\nC, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103% at \\n<inline-formula> <tex-math>$250~^{\\\\circ }$ </tex-math></inline-formula>\\nC) compared with that of monolithic BSPT HTUTs (~30% at \\n<inline-formula> <tex-math>$250~^{\\\\circ }$ </tex-math></inline-formula>\\nC). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block was performed, showing the potential for high-temperature NDT applications.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"71 6\",\"pages\":\"638-647\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506470/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10506470/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

高温无损检测(NDT)的发展要求超声波传感器具有良好的耐温性和高灵敏度,以提高检测效率。压电复合材料具有较高的机电耦合系数和可调节的声阻抗,因此可以提高换能器的性能。本研究设计并制造了基于 0.36BiScO3-0.64PbTiO3 (BSPT) 的 1-3-2 复合材料和 1-3-2 高温复合超声波换能器 (HTCUT),0.36BiScO3-0.64PbTiO3(BSPT)和高温环氧树脂是 200°C-300°C 下的首选压电材料,中心频率为 6 MHz。从 25°C 到 250°C,1-3-2 复合材料显示出比单片 BSPT(约 0.5)更高的机电耦合系数 kt,尤其是在高温下(25°C 时约 0.53,250°C 时约 0.64)。1-3-2 HTCUT 的脉冲回波响应信号在高达 250°C 时仍可分辨,在低于 150°C 时保持稳定(Vpp~500 mV),与单片 BSPT 高温超声换能器(HTUT)相比,灵敏度更高(提高了 7 dB)。与单片 BSPT 高温超声波传感器(约 30250°C)相比,带宽大大提高,尤其是在高温(约 103250°C)条件下。为了验证其卓越性能,对阶梯钢块进行了 B 模式扫描成像测量,并对钢块进行了缺陷位置检测,显示了其在高温无损检测应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
0.36BiScO3-0.64PbTiO3/Epoxy 1-3-2 High- Temperature Composite Ultrasonic Transducer for Nondestructive Testing Applications
The development of high-temperature nondestructive testing (NDT) requires ultrasonic transducers with good temperature resistance and high sensitivity for improved detection efficiency. Piezoelectric composite can improve the performance of transducers because of its high electromechanical coupling coefficient and adjustable acoustic impedance. In this study, 1-3-2 composites and 1-3-2 high-temperature composite ultrasonic transducers (HTCUTs) based on 0.36BiScO3-0.64PbTiO3 (BSPT), which is preferred piezoelectric materials at $200~^{\circ }$ C– $300~^{\circ }$ C, and high-temperature epoxy with a center frequency of 6 MHz were designed and fabricated. From $25~^{\circ }$ C to $250~^{\circ }$ C, 1-3-2 composites show a higher electromechanical coupling coefficient ${k}_{t}$ especially at high temperatures (~0.53 at $25~^{\circ }$ C and ~0.64 at $250~^{\circ }$ C) than monolithic BSPT (~0.5). The signal of the pulse-echo response of 1-3-2 HTCUTs is distinguishable up to $250~^{\circ }$ C and remains stable ( ${V}_{\text {pp}}~\sim 500$ mV) below $150~^{\circ }$ C, exhibiting higher sensitivity (improved by 7 dB) than that of monolithic BSPT high-temperature ultrasonic transducers (HTUTs). Bandwidth has been greatly enhanced especially at high temperatures (~103% at $250~^{\circ }$ C) compared with that of monolithic BSPT HTUTs (~30% at $250~^{\circ }$ C). To verify the excellent performance, B-mode scanning imaging measurement of a stepped steel block and defect location detection of a steel block was performed, showing the potential for high-temperature NDT applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe. LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-mode Ultrasound Video Streams. A Phantom-Free Approach for Estimating the Backscatter Coefficient of Aggregated Red Blood Cells applied to COVID-19 Patients. High-frequency wearable ultrasound array belt for small animal echocardiography. Deep Power-aware Tunable Weighting for Ultrasound Microvascular Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1