克隆中生根柱头的比例是否会影响有匍匐茎克隆植物紫云英的整体生长?

IF 1.1 4区 生物学 Q4 ECOLOGY Plant Species Biology Pub Date : 2024-04-22 DOI:10.1111/1442-1984.12456
Jing Chen, De‐Zhi Li, Xiao‐Tao Yun, Ying Wang, Ling‐Ling Li, Jing Jia, Samreen Ghulam Rasool
{"title":"克隆中生根柱头的比例是否会影响有匍匐茎克隆植物紫云英的整体生长?","authors":"Jing Chen, De‐Zhi Li, Xiao‐Tao Yun, Ying Wang, Ling‐Ling Li, Jing Jia, Samreen Ghulam Rasool","doi":"10.1111/1442-1984.12456","DOIUrl":null,"url":null,"abstract":"It is naturally common that different proportions of ramets in a clone lose rooting conditions due to habitat stress or obstacles, which potentially affects the overall growth of the clonal plant to different extents. However, so far, little attention has been paid to such phenomena and much less to the underlying ecological mechanisms. Taking Zoysia japonica as material, through an experiment with two nutrition levels in the habitats and five rooting ramet proportions in the clones, the impacts of proportions of rooting ramets in the clone on the overall growth were tested and the ecological mechanisms were analyzed. The results showed that there was no significant difference in the total clonal biomasses among the clones with five rooting ramet proportions under high and low nutrition levels, except for that with 0% rooting ramet proportion. Under both high and low nutrition levels, the lower rooting ramet proportions (0% and 25%) in the clones significantly decreased the number of the so‐called A‐ and B‐ramets, root biomass, stolon length per unit biomass, and root–shoot ratio, but significantly increased the stolon biomass of the clones. Stolon elongation was promoted under high nutrient level, and biomass allocations to stolons and roots increased under low nutrition levels. A‐ramet biomasses accounted for about 50% and 30% of the total biomasses of the whole clone under high and low nutrition levels, respectively. These results might be reasonably explained in terms of clonal integration, compensatory growth, division of labor, and bet‐hedging strategy.","PeriodicalId":54601,"journal":{"name":"Plant Species Biology","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do proportions of rooting ramets in the clone affect the overall growth of the stoloniferous clonal plant Zoysia japonica?\",\"authors\":\"Jing Chen, De‐Zhi Li, Xiao‐Tao Yun, Ying Wang, Ling‐Ling Li, Jing Jia, Samreen Ghulam Rasool\",\"doi\":\"10.1111/1442-1984.12456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is naturally common that different proportions of ramets in a clone lose rooting conditions due to habitat stress or obstacles, which potentially affects the overall growth of the clonal plant to different extents. However, so far, little attention has been paid to such phenomena and much less to the underlying ecological mechanisms. Taking Zoysia japonica as material, through an experiment with two nutrition levels in the habitats and five rooting ramet proportions in the clones, the impacts of proportions of rooting ramets in the clone on the overall growth were tested and the ecological mechanisms were analyzed. The results showed that there was no significant difference in the total clonal biomasses among the clones with five rooting ramet proportions under high and low nutrition levels, except for that with 0% rooting ramet proportion. Under both high and low nutrition levels, the lower rooting ramet proportions (0% and 25%) in the clones significantly decreased the number of the so‐called A‐ and B‐ramets, root biomass, stolon length per unit biomass, and root–shoot ratio, but significantly increased the stolon biomass of the clones. Stolon elongation was promoted under high nutrient level, and biomass allocations to stolons and roots increased under low nutrition levels. A‐ramet biomasses accounted for about 50% and 30% of the total biomasses of the whole clone under high and low nutrition levels, respectively. These results might be reasonably explained in terms of clonal integration, compensatory growth, division of labor, and bet‐hedging strategy.\",\"PeriodicalId\":54601,\"journal\":{\"name\":\"Plant Species Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Species Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1442-1984.12456\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Species Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1442-1984.12456","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在克隆植物中,不同比例的柱头因生境压力或障碍而失去生根条件的情况自然很常见,这可能会在不同程度上影响克隆植物的整体生长。然而,迄今为止,人们很少关注这种现象,更少关注其背后的生态机制。以紫云英为材料,通过生境中两种营养水平和克隆中五种生根柱比例的实验,测试了克隆中生根柱比例对整体生长的影响,并分析了其生态机制。结果表明,在高营养水平和低营养水平下,除生根率为0%的克隆外,其他五种生根率的克隆总生物量无显著差异。在高营养水平和低营养水平下,较低生根块比例(0% 和 25%)的克隆在所谓的 A 生根块和 B 生根块数量、根生物量、单位生物量的匍匐茎长度和根芽比方面均显著下降,但在匍匐茎生物量方面却显著增加。在高营养水平下,匍匐茎伸长加快;在低营养水平下,匍匐茎和根的生物量分配增加。在高营养水平和低营养水平下,A-匍匐茎生物量分别约占整个克隆生物量的 50%和 30%。这些结果可以从克隆整合、补偿生长、分工和对赌策略等方面得到合理解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do proportions of rooting ramets in the clone affect the overall growth of the stoloniferous clonal plant Zoysia japonica?
It is naturally common that different proportions of ramets in a clone lose rooting conditions due to habitat stress or obstacles, which potentially affects the overall growth of the clonal plant to different extents. However, so far, little attention has been paid to such phenomena and much less to the underlying ecological mechanisms. Taking Zoysia japonica as material, through an experiment with two nutrition levels in the habitats and five rooting ramet proportions in the clones, the impacts of proportions of rooting ramets in the clone on the overall growth were tested and the ecological mechanisms were analyzed. The results showed that there was no significant difference in the total clonal biomasses among the clones with five rooting ramet proportions under high and low nutrition levels, except for that with 0% rooting ramet proportion. Under both high and low nutrition levels, the lower rooting ramet proportions (0% and 25%) in the clones significantly decreased the number of the so‐called A‐ and B‐ramets, root biomass, stolon length per unit biomass, and root–shoot ratio, but significantly increased the stolon biomass of the clones. Stolon elongation was promoted under high nutrient level, and biomass allocations to stolons and roots increased under low nutrition levels. A‐ramet biomasses accounted for about 50% and 30% of the total biomasses of the whole clone under high and low nutrition levels, respectively. These results might be reasonably explained in terms of clonal integration, compensatory growth, division of labor, and bet‐hedging strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Species Biology
Plant Species Biology 生物-生态学
CiteScore
2.70
自引率
14.30%
发文量
36
审稿时长
>12 weeks
期刊介绍: Plant Species Biology is published four times a year by The Society for the Study of Species Biology. Plant Species Biology publishes research manuscripts in the fields of population biology, pollination biology, evolutionary ecology, biosystematics, co-evolution, and any other related fields in biology. In addition to full length papers, the journal also includes short research papers as notes and comments. Invited articles may be accepted or occasion at the request of the Editorial Board. Manuscripts should contain new results of empirical and/or theoretical investigations concerning facts, processes, mechanisms or concepts of evolutionary as well as biological phenomena. Papers that are purely descriptive are not suitable for this journal. Notes & comments of the following contents will not be accepted for publication: Development of DNA markers. The journal is introducing ''Life history monographs of Japanese plant species''. The journal is dedicated to minimizing the time between submission, review and publication and to providing a high quality forum for original research in Plant Species Biology.
期刊最新文献
Nocturnal moth pollination in an alpine orchid, Platanthera tipuloides Variability of the sexual reproductive part in stinging nettle Urtica dioica L. (Urticaceae): From flower to genet Germination ecology of Phytolacca americana L. in its invasive range Spatial heterogeneity of fire and flooding patterns can support higher diversity of floral functional traits in an indigenous‐managed landscape Acknowledging the dedication of Plant Species Biology's long‐time editorial board members
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1