日本绿萼梅在匍匐茎形成过程中的副尾形成。

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Evolution & Development Pub Date : 2024-04-21 DOI:10.1111/ede.12477
Daisuke S. Sato, Mayuko Nakamura, María Teresa Aguado, Toru Miura
{"title":"日本绿萼梅在匍匐茎形成过程中的副尾形成。","authors":"Daisuke S. Sato,&nbsp;Mayuko Nakamura,&nbsp;María Teresa Aguado,&nbsp;Toru Miura","doi":"10.1111/ede.12477","DOIUrl":null,"url":null,"abstract":"<p>Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called “stolonization,” in which posterior segments are transformed into a reproductive individual-like unit called a “stolon.” <i>Megasyllis nipponica</i> forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12477","citationCount":"0","resultStr":"{\"title\":\"Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica\",\"authors\":\"Daisuke S. Sato,&nbsp;Mayuko Nakamura,&nbsp;María Teresa Aguado,&nbsp;Toru Miura\",\"doi\":\"10.1111/ede.12477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called “stolonization,” in which posterior segments are transformed into a reproductive individual-like unit called a “stolon.” <i>Megasyllis nipponica</i> forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.</p>\",\"PeriodicalId\":12083,\"journal\":{\"name\":\"Evolution & Development\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12477\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12477\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12477","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

茜草科底栖环带动物表现出一种独特的有性生殖模式,即 "匍匐茎化",在这种模式下,后节转变成一个类似生殖个体的单位,称为 "匍匐茎"。Megasyllis nipponica 在匍匐茎分离前,会在树干中部形成匍匐茎头和副尾,而在后截肢的情况下,后部再生会在截肢后的伤口处开始。为了了解匍匐茎形成过程中后部再生和次生尾形成的区别,本研究对这两种尾形成类型的发育过程进行了详细比较。形态学和内部结构观察(即细胞增殖和肌肉/神经发育)表明,后部再生的一些过程,如截肢部位的胚泡形成和肌肉/神经再生,在次生尾形成过程中缺失。与此相反,次生尾表现出一些独特的特征,如形成腹外侧半尾芽,随后在中间融合,以及在匍匐茎分离前形成肌肉/神经分支。匍匐茎形成过程中的这些新特征被认为是适应性的,因为动物需要快速恢复后端以再次形成匍匐茎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica

Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called “stolonization,” in which posterior segments are transformed into a reproductive individual-like unit called a “stolon.” Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
期刊最新文献
Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Embryonic Lethality, Juvenile Growth Variation, and Adult Sterility Correlate With Phylogenetic Distance of Danionin Hybrids Heterochrony and Oophagy Underlie the Evolution of Giant Filter-Feeding Lamniform Sharks Issue information Coding-Sequence Evolution Does Not Explain Divergence in Petal Anthocyanin Pigmentation Between Mimulus luteus Var luteus and M. l. variegatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1