N. Lysova, F. Solari, Michele Bocelli, Andrea Volpi, Roberto Montanari
{"title":"连续紫外线-C 处理水果和蔬菜的工业设备:模拟辅助设计和模型验证","authors":"N. Lysova, F. Solari, Michele Bocelli, Andrea Volpi, Roberto Montanari","doi":"10.1515/ijfe-2023-0065","DOIUrl":null,"url":null,"abstract":"\n The irradiation of foods with UV-C light is a non-thermal and non-chemical treatment that allows for achieving several benefits, from surface decontamination to hormetic effects on biological matrices. Nowadays, even if its effects have been extensively proven and discussed, UV-C radiation is not widespread on an industrial level for the treatment of solid and liquid foods, mainly due to technical limitations and the non-uniformity of legislation for different products and among different countries. In this study, numerical simulation was adopted as a tool for the design and optimization of a device for the UV-C treatment of fruits and vegetables. After validating the modelling approach, the radiation treatment was evaluated for different product configurations. The proposed approach aims to facilitate the implementation and the scale-up of the UV-C treatment in the food industry, as it allows for assessing its effects under different operating conditions, prior to the physical prototyping stages.","PeriodicalId":49054,"journal":{"name":"International Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industrial device for the continuous UV-C treatment of fruit and vegetables: simulation-aided design and model validation\",\"authors\":\"N. Lysova, F. Solari, Michele Bocelli, Andrea Volpi, Roberto Montanari\",\"doi\":\"10.1515/ijfe-2023-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The irradiation of foods with UV-C light is a non-thermal and non-chemical treatment that allows for achieving several benefits, from surface decontamination to hormetic effects on biological matrices. Nowadays, even if its effects have been extensively proven and discussed, UV-C radiation is not widespread on an industrial level for the treatment of solid and liquid foods, mainly due to technical limitations and the non-uniformity of legislation for different products and among different countries. In this study, numerical simulation was adopted as a tool for the design and optimization of a device for the UV-C treatment of fruits and vegetables. After validating the modelling approach, the radiation treatment was evaluated for different product configurations. The proposed approach aims to facilitate the implementation and the scale-up of the UV-C treatment in the food industry, as it allows for assessing its effects under different operating conditions, prior to the physical prototyping stages.\",\"PeriodicalId\":49054,\"journal\":{\"name\":\"International Journal of Food Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1515/ijfe-2023-0065\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1515/ijfe-2023-0065","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Industrial device for the continuous UV-C treatment of fruit and vegetables: simulation-aided design and model validation
The irradiation of foods with UV-C light is a non-thermal and non-chemical treatment that allows for achieving several benefits, from surface decontamination to hormetic effects on biological matrices. Nowadays, even if its effects have been extensively proven and discussed, UV-C radiation is not widespread on an industrial level for the treatment of solid and liquid foods, mainly due to technical limitations and the non-uniformity of legislation for different products and among different countries. In this study, numerical simulation was adopted as a tool for the design and optimization of a device for the UV-C treatment of fruits and vegetables. After validating the modelling approach, the radiation treatment was evaluated for different product configurations. The proposed approach aims to facilitate the implementation and the scale-up of the UV-C treatment in the food industry, as it allows for assessing its effects under different operating conditions, prior to the physical prototyping stages.
期刊介绍:
International Journal of Food Engineering is devoted to engineering disciplines related to processing foods. The areas of interest include heat, mass transfer and fluid flow in food processing; food microstructure development and characterization; application of artificial intelligence in food engineering research and in industry; food biotechnology; and mathematical modeling and software development for food processing purposes. Authors and editors come from top engineering programs around the world: the U.S., Canada, the U.K., and Western Europe, but also South America, Asia, Africa, and the Middle East.