ITD-YOLOv8:基于 YOLOv8 的无人机红外目标探测模型

Drones Pub Date : 2024-04-19 DOI:10.3390/drones8040161
Xiaofeng Zhao, Wenwen Zhang, Hui Zhang, Chao Zheng, Junyi Ma, Zhili Zhang
{"title":"ITD-YOLOv8:基于 YOLOv8 的无人机红外目标探测模型","authors":"Xiaofeng Zhao, Wenwen Zhang, Hui Zhang, Chao Zheng, Junyi Ma, Zhili Zhang","doi":"10.3390/drones8040161","DOIUrl":null,"url":null,"abstract":"A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs).","PeriodicalId":507567,"journal":{"name":"Drones","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles\",\"authors\":\"Xiaofeng Zhao, Wenwen Zhang, Hui Zhang, Chao Zheng, Junyi Ma, Zhili Zhang\",\"doi\":\"10.3390/drones8040161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs).\",\"PeriodicalId\":507567,\"journal\":{\"name\":\"Drones\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones8040161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8040161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对无人机航拍红外图像目标检测中地面背景复杂、目标尺度不均等因素造成的模型漏检和误检以及计算复杂度高等问题,提出了一种基于YOLOv8的无人机红外目标检测模型ITD-YOLOv8。首先,在轻量级网络 GhostHGNetV2 的基础上设计了改进的 YOLOv8 骨干特征提取网络。它能有效捕捉不同尺度的目标特征信息,在保持轻量级的同时提高复杂环境下的目标检测精度。其次,VoVGSCSP 通过参考全局上下文信息和多尺度特征来增强颈部结构,从而提高模型的感知能力。同时,还引入了一种名为 AXConv 的轻量级卷积运算,以取代常规卷积模块。用不同大小的卷积核取代传统的固定大小卷积核,有效降低了模型的复杂度。然后,为了进一步优化模型,减少物体检测过程中的漏检和误检,在模型的颈部引入了 CoordAtt 关注机制,对特征图的通道维度进行加权,让网络更多地关注重要的特征信息,从而提高物体检测的准确性和鲁棒性。最后,将 XIoU 作为边界框的损失函数,提高了目标定位的精度。实验结果表明,与 YOLOv8n 相比,ITD-YOLOv8 能有效降低复杂背景下多尺度小目标检测的漏检率和误检率。此外,它还减少了 41.9% 的模型参数和 25.9% 的浮点运算。此外,平均准确率(mAP)达到了令人印象深刻的 93.5%,从而证实了该模型适用于无人飞行器(UAV)的红外目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles
A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model’s applicability for infrared target detection on unmanned aerial vehicles (UAVs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Nonlinear Model Predictive Control Based Fast Trajectory Tracking for a Quadrotor Unmanned Aerial Vehicle A General Method for Pre-Flight Preparation in Data Collection for Unmanned Aerial Vehicle-Based Bridge Inspection A Mission Planning Method for Long-Endurance Unmanned Aerial Vehicles: Integrating Heterogeneous Ground Control Resource Allocation Equivalent Spatial Plane-Based Relative Pose Estimation of UAVs Multi-Type Task Assignment Algorithm for Heterogeneous UAV Cluster Based on Improved NSGA-Ⅱ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1