利用流量子序列聚类-重构分析检测地区计量区域的突发事件

Mengke Zhao, Haixing Liu, Gengyan Li, Chi Zhang
{"title":"利用流量子序列聚类-重构分析检测地区计量区域的突发事件","authors":"Mengke Zhao, Haixing Liu, Gengyan Li, Chi Zhang","doi":"10.2166/aqua.2024.277","DOIUrl":null,"url":null,"abstract":"\n \n Frequent burst events in water distribution systems cause severe water loss and other environmental issues such as contamination and carbon emissions. The availability of massive monitored data has facilitated the development of data-driven burst detection methods. This paper proposes the flow subsequences clustering–reconstruction analysis method for burst detection in district metering areas (DMAs). The sliding window is used to create flow subsequence libraries for all time points of a day using a historical data set and thereafter the clustering–reconstruction analysis is conducted to obtain flow pattern libraries and reconstruction error subsequences. The threshold vector is determined by the detection matrix extracted from the reconstruction error subsequences at each time point. At the detection stage, the new flow subsequence is created and its reconstruction version is obtained based on the flow pattern library at the same time point. The new detection vector is extracted and compared with the threshold vector to identify bursts. The proposed method is applied to two real-world DMAs and its detection performance is demonstrated and compared with two previous methods. The proposed method is proven to be effective in detecting burst events with fewer false alarms.","PeriodicalId":513288,"journal":{"name":"AQUA — Water Infrastructure, Ecosystems and Society","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burst detection in district metering areas using flow subsequences clustering–reconstruction analysis\",\"authors\":\"Mengke Zhao, Haixing Liu, Gengyan Li, Chi Zhang\",\"doi\":\"10.2166/aqua.2024.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Frequent burst events in water distribution systems cause severe water loss and other environmental issues such as contamination and carbon emissions. The availability of massive monitored data has facilitated the development of data-driven burst detection methods. This paper proposes the flow subsequences clustering–reconstruction analysis method for burst detection in district metering areas (DMAs). The sliding window is used to create flow subsequence libraries for all time points of a day using a historical data set and thereafter the clustering–reconstruction analysis is conducted to obtain flow pattern libraries and reconstruction error subsequences. The threshold vector is determined by the detection matrix extracted from the reconstruction error subsequences at each time point. At the detection stage, the new flow subsequence is created and its reconstruction version is obtained based on the flow pattern library at the same time point. The new detection vector is extracted and compared with the threshold vector to identify bursts. The proposed method is applied to two real-world DMAs and its detection performance is demonstrated and compared with two previous methods. The proposed method is proven to be effective in detecting burst events with fewer false alarms.\",\"PeriodicalId\":513288,\"journal\":{\"name\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AQUA — Water Infrastructure, Ecosystems and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2024.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA — Water Infrastructure, Ecosystems and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2024.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

输水系统中频繁发生的爆裂事件会造成严重的水损失和其他环境问题,如污染和碳排放。海量监测数据的可用性促进了数据驱动的突发事件检测方法的发展。本文提出了用于区域计量区域(DMA)突发事件检测的流量子序列聚类-重构分析方法。利用历史数据集,使用滑动窗口创建一天内所有时间点的流量子序列库,然后进行聚类-重构分析,以获得流量模式库和重构误差子序列。阈值向量由从每个时间点的重构误差子序列中提取的检测矩阵决定。在检测阶段,创建新的流量子序列,并根据同一时间点的流量模式库获得其重构版本。提取新的检测向量并与阈值向量进行比较,以识别突发。将所提出的方法应用于两个真实世界的 DMA,展示了其检测性能,并与之前的两种方法进行了比较。事实证明,所提方法能有效检测突发事件,且误报较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Burst detection in district metering areas using flow subsequences clustering–reconstruction analysis
Frequent burst events in water distribution systems cause severe water loss and other environmental issues such as contamination and carbon emissions. The availability of massive monitored data has facilitated the development of data-driven burst detection methods. This paper proposes the flow subsequences clustering–reconstruction analysis method for burst detection in district metering areas (DMAs). The sliding window is used to create flow subsequence libraries for all time points of a day using a historical data set and thereafter the clustering–reconstruction analysis is conducted to obtain flow pattern libraries and reconstruction error subsequences. The threshold vector is determined by the detection matrix extracted from the reconstruction error subsequences at each time point. At the detection stage, the new flow subsequence is created and its reconstruction version is obtained based on the flow pattern library at the same time point. The new detection vector is extracted and compared with the threshold vector to identify bursts. The proposed method is applied to two real-world DMAs and its detection performance is demonstrated and compared with two previous methods. The proposed method is proven to be effective in detecting burst events with fewer false alarms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic performance of TiO2 modified with graphene derivatives and Fe (Ⅲ) at different thermal reduction temperatures Why do people save water? A systematic review of household water consumption behaviour in times of water availability uncertainty The socio-technical short-term implications of drinking water hoarding on supply reliability Hydraulic investigation of flows at high-head overflow spillway with multiple aerators: a physical and numerical study of Mohmand Dam, Pakistan Water quality ensemble prediction model for the urban water reservoir based on the hybrid long short-term memory (LSTM) network analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1