{"title":"基于信息差距决策理论的风险规避策略,用于配电网中服务变压器的优化布置","authors":"Mohammad Ali Alipour, Alireza Askarzadeh","doi":"10.1049/gtd2.13167","DOIUrl":null,"url":null,"abstract":"<p>In distribution networks, among the planning problems, optimal placement of medium voltage to low voltage (MV/LV) transformers is a vital and challenging issue. Electrical load uncertainty is an important factor that affects the result of this planning problem. This paper investigates optimal allocation of service transformers with respect to the load uncertainty modelled by information gap decision theory (IGDT). For this aim, the planning problem is solved in risk-neutral (RN) and risk-averse (RA) frameworks. In RN strategy, objective function is defined to minimize the cost of service transformers and low voltage feeders as well as the cost of power losses. On the other hand, in RA strategy, objective function is defined to maximize the radius of the uncertainty in such a way that any deviation of the uncertain parameter results in an objective function value that is not worse than the critical limit. The optimization problem is solved by crow search algorithm (CSA) and particle swarm optimization (PSO) and the results are compared. In mid-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 5.89%, 13.64%, 21.37%, 28.97%, 34.39% and 43.46%, respectively. In long-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 6.92%, 13.33%, 20.39%, 27.03%, 34% and 40.46%, respectively. Moreover, on average, CSA finds more promising results than PSO.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13167","citationCount":"0","resultStr":"{\"title\":\"A risk-averse strategy based on information gap decision theory for optimal placement of service transformers in distribution networks\",\"authors\":\"Mohammad Ali Alipour, Alireza Askarzadeh\",\"doi\":\"10.1049/gtd2.13167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In distribution networks, among the planning problems, optimal placement of medium voltage to low voltage (MV/LV) transformers is a vital and challenging issue. Electrical load uncertainty is an important factor that affects the result of this planning problem. This paper investigates optimal allocation of service transformers with respect to the load uncertainty modelled by information gap decision theory (IGDT). For this aim, the planning problem is solved in risk-neutral (RN) and risk-averse (RA) frameworks. In RN strategy, objective function is defined to minimize the cost of service transformers and low voltage feeders as well as the cost of power losses. On the other hand, in RA strategy, objective function is defined to maximize the radius of the uncertainty in such a way that any deviation of the uncertain parameter results in an objective function value that is not worse than the critical limit. The optimization problem is solved by crow search algorithm (CSA) and particle swarm optimization (PSO) and the results are compared. In mid-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 5.89%, 13.64%, 21.37%, 28.97%, 34.39% and 43.46%, respectively. In long-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 6.92%, 13.33%, 20.39%, 27.03%, 34% and 40.46%, respectively. Moreover, on average, CSA finds more promising results than PSO.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13167\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13167","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A risk-averse strategy based on information gap decision theory for optimal placement of service transformers in distribution networks
In distribution networks, among the planning problems, optimal placement of medium voltage to low voltage (MV/LV) transformers is a vital and challenging issue. Electrical load uncertainty is an important factor that affects the result of this planning problem. This paper investigates optimal allocation of service transformers with respect to the load uncertainty modelled by information gap decision theory (IGDT). For this aim, the planning problem is solved in risk-neutral (RN) and risk-averse (RA) frameworks. In RN strategy, objective function is defined to minimize the cost of service transformers and low voltage feeders as well as the cost of power losses. On the other hand, in RA strategy, objective function is defined to maximize the radius of the uncertainty in such a way that any deviation of the uncertain parameter results in an objective function value that is not worse than the critical limit. The optimization problem is solved by crow search algorithm (CSA) and particle swarm optimization (PSO) and the results are compared. In mid-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 5.89%, 13.64%, 21.37%, 28.97%, 34.39% and 43.46%, respectively. In long-term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 6.92%, 13.33%, 20.39%, 27.03%, 34% and 40.46%, respectively. Moreover, on average, CSA finds more promising results than PSO.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf