{"title":"利用人脸网格和长期递归卷积网络,基于唇形检测和识别印尼语读唇语","authors":"Aripin, Abas Setiawan","doi":"10.1155/2024/6479124","DOIUrl":null,"url":null,"abstract":"Communication through speech can be hindered by environmental noise, prompting the need for alternative methods such as lip reading, which bypasses auditory challenges. However, the accurate interpretation of lip movements is impeded by the uniqueness of individual lip shapes, necessitating detailed analysis. In addition, the development of an Indonesian dataset addresses the lack of diversity in existing datasets, predominantly in English, fostering more inclusive research. This study proposes an enhanced lip-reading system trained using the long-term recurrent convolutional network (LRCN) considering eight different types of lip shapes. MediaPipe Face Mesh precisely detects lip landmarks, enabling the LRCN model to recognize Indonesian utterances. Experimental results demonstrate the effectiveness of the approach, with the LRCN model with three convolutional layers (LRCN-3Conv) achieving 95.42% accuracy for word test data and 95.63% for phrases, outperforming the convolutional long short-term memory (Conv-LSTM) method. The proposed approach outperforms Conv-LSTM in terms of accuracy. Furthermore, the evaluation of the original MIRACL-VC1 dataset also produced a best accuracy of 90.67% on LRCN-3Conv compared to previous studies in the word-labeled class. The success is attributed to MediaPipe Face Mesh detection, which facilitates the accurate detection of the lip region. Leveraging advanced deep learning techniques and precise landmark detection, these findings promise improved communication accessibility for individuals facing auditory challenges.","PeriodicalId":44894,"journal":{"name":"Applied Computational Intelligence and Soft Computing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesian Lip-Reading Detection and Recognition Based on Lip Shape Using Face Mesh and Long-Term Recurrent Convolutional Network\",\"authors\":\"Aripin, Abas Setiawan\",\"doi\":\"10.1155/2024/6479124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication through speech can be hindered by environmental noise, prompting the need for alternative methods such as lip reading, which bypasses auditory challenges. However, the accurate interpretation of lip movements is impeded by the uniqueness of individual lip shapes, necessitating detailed analysis. In addition, the development of an Indonesian dataset addresses the lack of diversity in existing datasets, predominantly in English, fostering more inclusive research. This study proposes an enhanced lip-reading system trained using the long-term recurrent convolutional network (LRCN) considering eight different types of lip shapes. MediaPipe Face Mesh precisely detects lip landmarks, enabling the LRCN model to recognize Indonesian utterances. Experimental results demonstrate the effectiveness of the approach, with the LRCN model with three convolutional layers (LRCN-3Conv) achieving 95.42% accuracy for word test data and 95.63% for phrases, outperforming the convolutional long short-term memory (Conv-LSTM) method. The proposed approach outperforms Conv-LSTM in terms of accuracy. Furthermore, the evaluation of the original MIRACL-VC1 dataset also produced a best accuracy of 90.67% on LRCN-3Conv compared to previous studies in the word-labeled class. The success is attributed to MediaPipe Face Mesh detection, which facilitates the accurate detection of the lip region. Leveraging advanced deep learning techniques and precise landmark detection, these findings promise improved communication accessibility for individuals facing auditory challenges.\",\"PeriodicalId\":44894,\"journal\":{\"name\":\"Applied Computational Intelligence and Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computational Intelligence and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6479124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Intelligence and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/6479124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Indonesian Lip-Reading Detection and Recognition Based on Lip Shape Using Face Mesh and Long-Term Recurrent Convolutional Network
Communication through speech can be hindered by environmental noise, prompting the need for alternative methods such as lip reading, which bypasses auditory challenges. However, the accurate interpretation of lip movements is impeded by the uniqueness of individual lip shapes, necessitating detailed analysis. In addition, the development of an Indonesian dataset addresses the lack of diversity in existing datasets, predominantly in English, fostering more inclusive research. This study proposes an enhanced lip-reading system trained using the long-term recurrent convolutional network (LRCN) considering eight different types of lip shapes. MediaPipe Face Mesh precisely detects lip landmarks, enabling the LRCN model to recognize Indonesian utterances. Experimental results demonstrate the effectiveness of the approach, with the LRCN model with three convolutional layers (LRCN-3Conv) achieving 95.42% accuracy for word test data and 95.63% for phrases, outperforming the convolutional long short-term memory (Conv-LSTM) method. The proposed approach outperforms Conv-LSTM in terms of accuracy. Furthermore, the evaluation of the original MIRACL-VC1 dataset also produced a best accuracy of 90.67% on LRCN-3Conv compared to previous studies in the word-labeled class. The success is attributed to MediaPipe Face Mesh detection, which facilitates the accurate detection of the lip region. Leveraging advanced deep learning techniques and precise landmark detection, these findings promise improved communication accessibility for individuals facing auditory challenges.
期刊介绍:
Applied Computational Intelligence and Soft Computing will focus on the disciplines of computer science, engineering, and mathematics. The scope of the journal includes developing applications related to all aspects of natural and social sciences by employing the technologies of computational intelligence and soft computing. The new applications of using computational intelligence and soft computing are still in development. Although computational intelligence and soft computing are established fields, the new applications of using computational intelligence and soft computing can be regarded as an emerging field, which is the focus of this journal.