二氧化钚表面水层的辐射化学过程

Howard E. Sims, Robin M. Orr
{"title":"二氧化钚表面水层的辐射化学过程","authors":"Howard E. Sims, Robin M. Orr","doi":"10.3389/fnuen.2024.1294584","DOIUrl":null,"url":null,"abstract":"It is generally accepted that radiolysis of water on the surface of PuO2 by alpha particles is the source of H2 which can cause pressurisation in sealed storage containers if the material is not adequately conditioned before packing. The mechanisms for this have not been discussed in detail previously. Radiolysis mechanisms of bulk water are summarised and then applied to water at the surface of PuO2. It is shown that the radiolysis processes occurring on timescales of less than 1 ps after energy deposition could have an impact on the storage behaviour of the PuO2 and the potential gas volume generated. Some of the radiolysis products are highly reactive and would be expected to react with plutonium at the surface, affecting the usual water radiolysis processes. A corollary of this observation is that the surface should not be considered a completely crystalline PuO2 solid. It is also highlighted that whilst there are significant uncertainties in the radiolysis process at the PuO2 surface there are also significant uncertainties in H2 formation mechanisms in bulk water. Finally, methods to model the radiolysis process at the surface and the prospects for predictive models are briefly discussed with suggestions for future areas of development.","PeriodicalId":505786,"journal":{"name":"Frontiers in Nuclear Engineering","volume":" 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation chemical processes in the water layer on the surface of PuO2\",\"authors\":\"Howard E. Sims, Robin M. Orr\",\"doi\":\"10.3389/fnuen.2024.1294584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is generally accepted that radiolysis of water on the surface of PuO2 by alpha particles is the source of H2 which can cause pressurisation in sealed storage containers if the material is not adequately conditioned before packing. The mechanisms for this have not been discussed in detail previously. Radiolysis mechanisms of bulk water are summarised and then applied to water at the surface of PuO2. It is shown that the radiolysis processes occurring on timescales of less than 1 ps after energy deposition could have an impact on the storage behaviour of the PuO2 and the potential gas volume generated. Some of the radiolysis products are highly reactive and would be expected to react with plutonium at the surface, affecting the usual water radiolysis processes. A corollary of this observation is that the surface should not be considered a completely crystalline PuO2 solid. It is also highlighted that whilst there are significant uncertainties in the radiolysis process at the PuO2 surface there are also significant uncertainties in H2 formation mechanisms in bulk water. Finally, methods to model the radiolysis process at the surface and the prospects for predictive models are briefly discussed with suggestions for future areas of development.\",\"PeriodicalId\":505786,\"journal\":{\"name\":\"Frontiers in Nuclear Engineering\",\"volume\":\" 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nuclear Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnuen.2024.1294584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nuclear Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnuen.2024.1294584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们普遍认为,α粒子对二氧化铀表面水分的放射性分解是 H2 的来源,如果材料在包装前没有经过充分的调节,H2 可能会导致密封储存容器内的增压。以前没有详细讨论过这种机制。我们总结了散装水的辐射分解机制,然后将其应用于二氧化铀表面的水。研究表明,能量沉积后发生的时间尺度小于 1 ps 的辐射分解过程会对二氧化钚的储存行为和产生的潜在气体体积产生影响。一些辐射分解产物具有很强的反应性,预计会与表面的钚发生反应,影响通常的水辐射分解过程。这一观察结果的推论是,不应将表面视为完全结晶的二氧化铀固体。研究还强调,虽然二氧化钚表面的辐射分解过程存在重大的不确定性,但大量水中的 H2 形成机制也存在重大的不确定性。最后,简要讨论了建立表面放射性分解过程模型的方法和预测模型的前景,并对未来的发展领域提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiation chemical processes in the water layer on the surface of PuO2
It is generally accepted that radiolysis of water on the surface of PuO2 by alpha particles is the source of H2 which can cause pressurisation in sealed storage containers if the material is not adequately conditioned before packing. The mechanisms for this have not been discussed in detail previously. Radiolysis mechanisms of bulk water are summarised and then applied to water at the surface of PuO2. It is shown that the radiolysis processes occurring on timescales of less than 1 ps after energy deposition could have an impact on the storage behaviour of the PuO2 and the potential gas volume generated. Some of the radiolysis products are highly reactive and would be expected to react with plutonium at the surface, affecting the usual water radiolysis processes. A corollary of this observation is that the surface should not be considered a completely crystalline PuO2 solid. It is also highlighted that whilst there are significant uncertainties in the radiolysis process at the PuO2 surface there are also significant uncertainties in H2 formation mechanisms in bulk water. Finally, methods to model the radiolysis process at the surface and the prospects for predictive models are briefly discussed with suggestions for future areas of development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging design of experiments to build chemometric models for the quantification of uranium (VI) and HNO3 by Raman spectroscopy Concept validation of separations for thorium-based radionuclide generator systems for medical application Ab-initio molecular dynamics study of eutectic chloride salt: MgCl2–NaCl–KCl Demonstrating autonomous controls on hardware test beds is a necessity for successful missions to Mars and beyond WP15 ConCorD state-of-the-art report (container corrosion under disposal conditions)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1