Luis Carlos Román-Escobedo, E. Cristiani-Urbina, L. Morales-Barrera
{"title":"用一种耐碱酵母对玉米硝化产生的废水(Nejayote)进行生物修复","authors":"Luis Carlos Román-Escobedo, E. Cristiani-Urbina, L. Morales-Barrera","doi":"10.3390/fermentation10040219","DOIUrl":null,"url":null,"abstract":"Nejayote, the wastewater from the nixtamalization of maize, is difficult to biodegrade due to its abundant calcium content; low levels of nitrogen, phosphorus, and easily assimilable sugars; elevated pH; and high chemical oxygen demand (COD). The aim of the present study was to isolate microorganisms capable of utilizing filtered nejayote (NEM) as the only source of carbon for growth and to test the best microorganism for the bioremediation of this wastewater by lowering the level of pH and COD. Of the 15 strains of microorganisms tested, Rhodotorula mucilaginosa LCRE was chosen and identified using molecular techniques. Subsequently, its growth kinetics were characterized during cultivation in unenriched NEM (control) and NEM enriched with nitrogen and phosphorus salts. R. mucilaginosa LCRE showed a greater growth (6.9 ≤ X ≤ 8.9 g L−1), biomass yield (0.33 ≤ YX/S ≤ 0.39 g g−1), and specific growth rate (0.748 ≤ µ ≤ 0.80 day−1) in the enriched versus control NEM (X = 6.55 g L−1, YX/S = 0.28 g g−1, and µ = 0.59 day−1). However, a higher total sugar consumption (94.98%), better COD removal efficiency (75.5%), and greater overall COD removal rate (1.73 g L−1 h−1) were found in the control NEM. Hence, R. mucilaginosa LCRE holds promise for the efficient bioremediation of nejayote without costly pretreatments or nutrient supplementation.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioremediation with an Alkali-Tolerant Yeast of Wastewater (Nejayote) Derived from the Nixtamalization of Maize\",\"authors\":\"Luis Carlos Román-Escobedo, E. Cristiani-Urbina, L. Morales-Barrera\",\"doi\":\"10.3390/fermentation10040219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nejayote, the wastewater from the nixtamalization of maize, is difficult to biodegrade due to its abundant calcium content; low levels of nitrogen, phosphorus, and easily assimilable sugars; elevated pH; and high chemical oxygen demand (COD). The aim of the present study was to isolate microorganisms capable of utilizing filtered nejayote (NEM) as the only source of carbon for growth and to test the best microorganism for the bioremediation of this wastewater by lowering the level of pH and COD. Of the 15 strains of microorganisms tested, Rhodotorula mucilaginosa LCRE was chosen and identified using molecular techniques. Subsequently, its growth kinetics were characterized during cultivation in unenriched NEM (control) and NEM enriched with nitrogen and phosphorus salts. R. mucilaginosa LCRE showed a greater growth (6.9 ≤ X ≤ 8.9 g L−1), biomass yield (0.33 ≤ YX/S ≤ 0.39 g g−1), and specific growth rate (0.748 ≤ µ ≤ 0.80 day−1) in the enriched versus control NEM (X = 6.55 g L−1, YX/S = 0.28 g g−1, and µ = 0.59 day−1). However, a higher total sugar consumption (94.98%), better COD removal efficiency (75.5%), and greater overall COD removal rate (1.73 g L−1 h−1) were found in the control NEM. Hence, R. mucilaginosa LCRE holds promise for the efficient bioremediation of nejayote without costly pretreatments or nutrient supplementation.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10040219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10040219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
玉米脱霉产生的废水(Nejayote)由于钙含量高;氮、磷和易同化糖含量低;pH 值升高;化学需氧量(COD)高等原因而难以生物降解。本研究的目的是分离出能够利用过滤后的新洁尔灭(NEM)作为唯一碳源进行生长的微生物,并通过降低 pH 值和 COD 水平,测试对这种废水进行生物修复的最佳微生物。在测试的 15 种微生物菌株中,选择了 Rhodotorula mucilaginosa LCRE,并利用分子技术对其进行了鉴定。随后,对其在未富集的 NEM(对照)和富含氮盐和磷盐的 NEM 中的生长动力学进行了鉴定。与对照组相比(X = 6.55 g L-1,YX/S = 0.28 g g-1,µ = 0.59 day-1),R. mucilaginosa LCRE 在富集的 NEM 中表现出更高的生长速度(6.9 ≤ X ≤ 8.9 g L-1)、生物量产量(0.33 ≤ YX/S ≤ 0.39 g g-1)和特定生长率(0.748 ≤ µ ≤ 0.80 day-1)。然而,对照 NEM 的总糖消耗量更高(94.98%),COD 去除效率更高(75.5%),COD 总去除率更高(1.73 g L-1 h-1)。因此,R. mucilaginosa LCRE有望在不进行昂贵的预处理或营养补充的情况下对新洁尔灭进行高效生物修复。
Bioremediation with an Alkali-Tolerant Yeast of Wastewater (Nejayote) Derived from the Nixtamalization of Maize
Nejayote, the wastewater from the nixtamalization of maize, is difficult to biodegrade due to its abundant calcium content; low levels of nitrogen, phosphorus, and easily assimilable sugars; elevated pH; and high chemical oxygen demand (COD). The aim of the present study was to isolate microorganisms capable of utilizing filtered nejayote (NEM) as the only source of carbon for growth and to test the best microorganism for the bioremediation of this wastewater by lowering the level of pH and COD. Of the 15 strains of microorganisms tested, Rhodotorula mucilaginosa LCRE was chosen and identified using molecular techniques. Subsequently, its growth kinetics were characterized during cultivation in unenriched NEM (control) and NEM enriched with nitrogen and phosphorus salts. R. mucilaginosa LCRE showed a greater growth (6.9 ≤ X ≤ 8.9 g L−1), biomass yield (0.33 ≤ YX/S ≤ 0.39 g g−1), and specific growth rate (0.748 ≤ µ ≤ 0.80 day−1) in the enriched versus control NEM (X = 6.55 g L−1, YX/S = 0.28 g g−1, and µ = 0.59 day−1). However, a higher total sugar consumption (94.98%), better COD removal efficiency (75.5%), and greater overall COD removal rate (1.73 g L−1 h−1) were found in the control NEM. Hence, R. mucilaginosa LCRE holds promise for the efficient bioremediation of nejayote without costly pretreatments or nutrient supplementation.