软件定义的无线体域网络中的安全数据传输

Zahraa M. Yahya, M. F. Al-Gailani
{"title":"软件定义的无线体域网络中的安全数据传输","authors":"Zahraa M. Yahya, M. F. Al-Gailani","doi":"10.26636/jtit.2024.2.1491","DOIUrl":null,"url":null,"abstract":"High security solutions are highly important in wireless medical environments, since patient data is confidential, sensitive and must be transmitted over a secure connection. Accordingly, a hybrid encryption method is proposed to ensure data confidentiality (RSA-2048 for key exchange using ACL in SDN with the addition of AES-256-CTR and a hashed secret key for data encryption), and the encrypted data is stored in a private blockchain with the DBFT consensus algorithm to ensure the integrity of data before it being accessed by a doctor's application which decrypts and displays the relevant information. The system was programmed using Python, in an NS3.37 simulator installed on Ubuntu with a MySQL database created using the Apache XAMPP. The product turned out to be a highly secure system for transmitting data from a medical sensor to the doctor's application, offering a throughput of approximately 9 Gbps for both encryption and decryption tasks, while the processing time equaled 0.014 µs per a 128-bit block size for both encryption and decryption, with latency amounting to 0.14 s per 1 KB of data, and the blockchain agreement time equaling 4 ms per 1 KB.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":" 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secure Data Delivery in a Software-Defined Wireless Body Area Network\",\"authors\":\"Zahraa M. Yahya, M. F. Al-Gailani\",\"doi\":\"10.26636/jtit.2024.2.1491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High security solutions are highly important in wireless medical environments, since patient data is confidential, sensitive and must be transmitted over a secure connection. Accordingly, a hybrid encryption method is proposed to ensure data confidentiality (RSA-2048 for key exchange using ACL in SDN with the addition of AES-256-CTR and a hashed secret key for data encryption), and the encrypted data is stored in a private blockchain with the DBFT consensus algorithm to ensure the integrity of data before it being accessed by a doctor's application which decrypts and displays the relevant information. The system was programmed using Python, in an NS3.37 simulator installed on Ubuntu with a MySQL database created using the Apache XAMPP. The product turned out to be a highly secure system for transmitting data from a medical sensor to the doctor's application, offering a throughput of approximately 9 Gbps for both encryption and decryption tasks, while the processing time equaled 0.014 µs per a 128-bit block size for both encryption and decryption, with latency amounting to 0.14 s per 1 KB of data, and the blockchain agreement time equaling 4 ms per 1 KB.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\" 27\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.2.1491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.2.1491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

高安全性解决方案在无线医疗环境中非常重要,因为病人数据是机密、敏感的,必须通过安全连接传输。因此,我们提出了一种混合加密方法来确保数据的机密性(在 SDN 中使用 ACL 进行密钥交换的 RSA-2048 加上用于数据加密的 AES-256-CTR 和哈希秘钥),加密后的数据通过 DBFT 共识算法存储在私人区块链中,以确保数据的完整性,然后再由医生的应用程序访问,解密并显示相关信息。该系统使用 Python 编程,在 Ubuntu 上安装了 NS3.37 模拟器,并使用 Apache XAMPP 创建了 MySQL 数据库。结果表明,该产品是一个高度安全的系统,可将数据从医疗传感器传输到医生的应用程序,加密和解密任务的吞吐量约为 9 Gbps,而加密和解密的处理时间等于 0.014 µs(每 128 位区块大小),延迟时间为 0.14 s(每 1 KB 数据),区块链协议时间等于 4 ms(每 1 KB 数据)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secure Data Delivery in a Software-Defined Wireless Body Area Network
High security solutions are highly important in wireless medical environments, since patient data is confidential, sensitive and must be transmitted over a secure connection. Accordingly, a hybrid encryption method is proposed to ensure data confidentiality (RSA-2048 for key exchange using ACL in SDN with the addition of AES-256-CTR and a hashed secret key for data encryption), and the encrypted data is stored in a private blockchain with the DBFT consensus algorithm to ensure the integrity of data before it being accessed by a doctor's application which decrypts and displays the relevant information. The system was programmed using Python, in an NS3.37 simulator installed on Ubuntu with a MySQL database created using the Apache XAMPP. The product turned out to be a highly secure system for transmitting data from a medical sensor to the doctor's application, offering a throughput of approximately 9 Gbps for both encryption and decryption tasks, while the processing time equaled 0.014 µs per a 128-bit block size for both encryption and decryption, with latency amounting to 0.14 s per 1 KB of data, and the blockchain agreement time equaling 4 ms per 1 KB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1