{"title":"管理极端天气对电网的影响:国际回顾","authors":"G. Hawker, Keith Bell, C. MacIver, Janusz Bialek","doi":"10.1088/2516-1083/ad3f6a","DOIUrl":null,"url":null,"abstract":"\n Extreme weather events, such as high winds, storms, flooding and temperature extremes, are a major cause of disruption to the supply of electricity to consumers. System Operators (SOs) are responsible for ensuring stable real-time operation of large-scale power networks, and will act to prevent adverse impacts of such events on consumer supply, contain the extent of supply interruptions that do occur, and restore supply to affected consumers in an efficient and timely manner. SOs will also generally be involved in some way in the long-term planning of the transmission network and generation capacity required to ensure future resilience. In this paper we review some of the strategies adopted by SOs across the globe in ensuring high levels of reliability and resilience to extreme weather, with reference to learning generated from specific recent events. In the face of the potential for both the frequency of such events and for their consequent impacts to increase in the future, we recommend that regulatory control of investment in networks is informed by quantified understanding of the climate-energy interface, including assessment of the potential frequency and impacts of future weather events and shared learning from events experienced by different operators. The statutory role of utilities should include robust assessment of future weather-related risks and appropriate investment in their asset resilience, as well as assisting in the preparedness of supporting agencies to mitigate the impacts of weather-related disturbances on energy consumers.","PeriodicalId":501831,"journal":{"name":"Progress in Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management of extreme weather impacts on electricity grids: An international review\",\"authors\":\"G. Hawker, Keith Bell, C. MacIver, Janusz Bialek\",\"doi\":\"10.1088/2516-1083/ad3f6a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Extreme weather events, such as high winds, storms, flooding and temperature extremes, are a major cause of disruption to the supply of electricity to consumers. System Operators (SOs) are responsible for ensuring stable real-time operation of large-scale power networks, and will act to prevent adverse impacts of such events on consumer supply, contain the extent of supply interruptions that do occur, and restore supply to affected consumers in an efficient and timely manner. SOs will also generally be involved in some way in the long-term planning of the transmission network and generation capacity required to ensure future resilience. In this paper we review some of the strategies adopted by SOs across the globe in ensuring high levels of reliability and resilience to extreme weather, with reference to learning generated from specific recent events. In the face of the potential for both the frequency of such events and for their consequent impacts to increase in the future, we recommend that regulatory control of investment in networks is informed by quantified understanding of the climate-energy interface, including assessment of the potential frequency and impacts of future weather events and shared learning from events experienced by different operators. The statutory role of utilities should include robust assessment of future weather-related risks and appropriate investment in their asset resilience, as well as assisting in the preparedness of supporting agencies to mitigate the impacts of weather-related disturbances on energy consumers.\",\"PeriodicalId\":501831,\"journal\":{\"name\":\"Progress in Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1083/ad3f6a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1083/ad3f6a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Management of extreme weather impacts on electricity grids: An international review
Extreme weather events, such as high winds, storms, flooding and temperature extremes, are a major cause of disruption to the supply of electricity to consumers. System Operators (SOs) are responsible for ensuring stable real-time operation of large-scale power networks, and will act to prevent adverse impacts of such events on consumer supply, contain the extent of supply interruptions that do occur, and restore supply to affected consumers in an efficient and timely manner. SOs will also generally be involved in some way in the long-term planning of the transmission network and generation capacity required to ensure future resilience. In this paper we review some of the strategies adopted by SOs across the globe in ensuring high levels of reliability and resilience to extreme weather, with reference to learning generated from specific recent events. In the face of the potential for both the frequency of such events and for their consequent impacts to increase in the future, we recommend that regulatory control of investment in networks is informed by quantified understanding of the climate-energy interface, including assessment of the potential frequency and impacts of future weather events and shared learning from events experienced by different operators. The statutory role of utilities should include robust assessment of future weather-related risks and appropriate investment in their asset resilience, as well as assisting in the preparedness of supporting agencies to mitigate the impacts of weather-related disturbances on energy consumers.