{"title":"用于生物医学应用的磁驱动液滴操纵技术的最新进展","authors":"Jiaqi Li, Kaixin Su, Hai-Yun Liu, Yuan Zou","doi":"10.3390/magnetochemistry10040028","DOIUrl":null,"url":null,"abstract":"The manipulation of droplets plays a vital role in biomedicine, chemistry, and hydromechanics, especially in microfluidics. Magnetic droplet manipulation has emerged as a prominent and advanced technique in comparison to other modes such as dielectric infiltration, optical radiation, and surface acoustic waves. Its notable progress is attributed to several advantages, including excellent biocompatibility, remote and non-contact control, and instantaneous response. This review provides a comprehensive overview of recent developments in magnetic droplet manipulation and its applications within the biomedical field. Firstly, the discussion involves an examination of the distinctive features associated with droplet manipulation based on both permanent magnet and electromagnet principles, along with a thorough exploration of the influencing factors impacting magnetic droplet manipulation. Additionally, an in-depth review of magnetic actuation mechanisms and various droplet manipulation methods is presented. Furthermore, the article elucidates the biomedical applications of magnetic droplet manipulation, particularly its role in diagnostic assays, drug discovery, and cell culture. Finally, the highlights and challenges of magnetic droplet manipulation in biomedical applications are described in detail.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Magnetically Actuated Droplet Manipulation for Biomedical Applications\",\"authors\":\"Jiaqi Li, Kaixin Su, Hai-Yun Liu, Yuan Zou\",\"doi\":\"10.3390/magnetochemistry10040028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manipulation of droplets plays a vital role in biomedicine, chemistry, and hydromechanics, especially in microfluidics. Magnetic droplet manipulation has emerged as a prominent and advanced technique in comparison to other modes such as dielectric infiltration, optical radiation, and surface acoustic waves. Its notable progress is attributed to several advantages, including excellent biocompatibility, remote and non-contact control, and instantaneous response. This review provides a comprehensive overview of recent developments in magnetic droplet manipulation and its applications within the biomedical field. Firstly, the discussion involves an examination of the distinctive features associated with droplet manipulation based on both permanent magnet and electromagnet principles, along with a thorough exploration of the influencing factors impacting magnetic droplet manipulation. Additionally, an in-depth review of magnetic actuation mechanisms and various droplet manipulation methods is presented. Furthermore, the article elucidates the biomedical applications of magnetic droplet manipulation, particularly its role in diagnostic assays, drug discovery, and cell culture. Finally, the highlights and challenges of magnetic droplet manipulation in biomedical applications are described in detail.\",\"PeriodicalId\":18194,\"journal\":{\"name\":\"Magnetochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/magnetochemistry10040028\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry10040028","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Recent Advances in Magnetically Actuated Droplet Manipulation for Biomedical Applications
The manipulation of droplets plays a vital role in biomedicine, chemistry, and hydromechanics, especially in microfluidics. Magnetic droplet manipulation has emerged as a prominent and advanced technique in comparison to other modes such as dielectric infiltration, optical radiation, and surface acoustic waves. Its notable progress is attributed to several advantages, including excellent biocompatibility, remote and non-contact control, and instantaneous response. This review provides a comprehensive overview of recent developments in magnetic droplet manipulation and its applications within the biomedical field. Firstly, the discussion involves an examination of the distinctive features associated with droplet manipulation based on both permanent magnet and electromagnet principles, along with a thorough exploration of the influencing factors impacting magnetic droplet manipulation. Additionally, an in-depth review of magnetic actuation mechanisms and various droplet manipulation methods is presented. Furthermore, the article elucidates the biomedical applications of magnetic droplet manipulation, particularly its role in diagnostic assays, drug discovery, and cell culture. Finally, the highlights and challenges of magnetic droplet manipulation in biomedical applications are described in detail.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.