{"title":"利用机器学习算法的堆叠集合预测每日水库流入量","authors":"Deepjyoti Deb, Vasan Arunachalam, K. S. Raju","doi":"10.2166/hydro.2024.210","DOIUrl":null,"url":null,"abstract":"\n \n The present study aims to evaluate the potentiality of Bidirectional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Networks (CNNs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Mechine (LGBM), and Random Forest (RF) for predicting daily inflows to the Sri Ram Sagar Project (SRSP), Telangana, India. Inputs to the model are rainfall, evaporation, time lag inflows, and climate indices. Seven combinations (S1–S7) of inputs were made. Fifteen and a half years of data were considered, out of which 11 years were used for training. Hyperparameter tuning is performed with the Tree-Structured Parzen Estimator. The performance of the algorithms is assessed using Kling–Gupta efficiency (KGE). Results indicate that Bi-LSTM with combination S7 performed better than others, as evident from KGE values of 0.92 and 0.87 during the training and testing, respectively. Furthermore, Stacking Ensemble Mechanism (SEM) has also been employed to ascertain its efficacy over other chosen algorithms, resulting in KGE values of 0.94 and 0.89 during training and testing. It has also been able to simulate peak inflow events satisfactorily. Thus, SEM is a better alternative for reservoir inflow predictions.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daily reservoir inflow prediction using stacking ensemble of machine learning algorithms\",\"authors\":\"Deepjyoti Deb, Vasan Arunachalam, K. S. Raju\",\"doi\":\"10.2166/hydro.2024.210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The present study aims to evaluate the potentiality of Bidirectional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Networks (CNNs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Mechine (LGBM), and Random Forest (RF) for predicting daily inflows to the Sri Ram Sagar Project (SRSP), Telangana, India. Inputs to the model are rainfall, evaporation, time lag inflows, and climate indices. Seven combinations (S1–S7) of inputs were made. Fifteen and a half years of data were considered, out of which 11 years were used for training. Hyperparameter tuning is performed with the Tree-Structured Parzen Estimator. The performance of the algorithms is assessed using Kling–Gupta efficiency (KGE). Results indicate that Bi-LSTM with combination S7 performed better than others, as evident from KGE values of 0.92 and 0.87 during the training and testing, respectively. Furthermore, Stacking Ensemble Mechanism (SEM) has also been employed to ascertain its efficacy over other chosen algorithms, resulting in KGE values of 0.94 and 0.89 during training and testing. It has also been able to simulate peak inflow events satisfactorily. Thus, SEM is a better alternative for reservoir inflow predictions.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.210\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Daily reservoir inflow prediction using stacking ensemble of machine learning algorithms
The present study aims to evaluate the potentiality of Bidirectional Long Short-Term Memory (Bi-LSTM), Convolutional Neural Networks (CNNs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Mechine (LGBM), and Random Forest (RF) for predicting daily inflows to the Sri Ram Sagar Project (SRSP), Telangana, India. Inputs to the model are rainfall, evaporation, time lag inflows, and climate indices. Seven combinations (S1–S7) of inputs were made. Fifteen and a half years of data were considered, out of which 11 years were used for training. Hyperparameter tuning is performed with the Tree-Structured Parzen Estimator. The performance of the algorithms is assessed using Kling–Gupta efficiency (KGE). Results indicate that Bi-LSTM with combination S7 performed better than others, as evident from KGE values of 0.92 and 0.87 during the training and testing, respectively. Furthermore, Stacking Ensemble Mechanism (SEM) has also been employed to ascertain its efficacy over other chosen algorithms, resulting in KGE values of 0.94 and 0.89 during training and testing. It has also been able to simulate peak inflow events satisfactorily. Thus, SEM is a better alternative for reservoir inflow predictions.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.