{"title":"利用扩展凸函数的进一步分式哈达玛积分不等式","authors":"Areej A. Almoneef, M. Barakat, Abd-Allah Hyder","doi":"10.3390/fractalfract8040230","DOIUrl":null,"url":null,"abstract":"This work investigates novel fractional Hadamard integral inequalities by utilizing extended convex functions and generalized Riemann-Liouville operators. By carefully using extended integral formulations, we not only find novel inequalities but also improve the accuracy of error bounds related to fractional Hadamard integrals. Our study broadens the applicability of these inequalities and shows that they are useful for a variety of convexity cases. Our results contribute to the advancement of mathematical analysis and provide useful information for theoretical comprehension as well as practical applications across several scientific directions.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further Fractional Hadamard Integral Inequalities Utilizing Extended Convex Functions\",\"authors\":\"Areej A. Almoneef, M. Barakat, Abd-Allah Hyder\",\"doi\":\"10.3390/fractalfract8040230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates novel fractional Hadamard integral inequalities by utilizing extended convex functions and generalized Riemann-Liouville operators. By carefully using extended integral formulations, we not only find novel inequalities but also improve the accuracy of error bounds related to fractional Hadamard integrals. Our study broadens the applicability of these inequalities and shows that they are useful for a variety of convexity cases. Our results contribute to the advancement of mathematical analysis and provide useful information for theoretical comprehension as well as practical applications across several scientific directions.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8040230\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040230","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Further Fractional Hadamard Integral Inequalities Utilizing Extended Convex Functions
This work investigates novel fractional Hadamard integral inequalities by utilizing extended convex functions and generalized Riemann-Liouville operators. By carefully using extended integral formulations, we not only find novel inequalities but also improve the accuracy of error bounds related to fractional Hadamard integrals. Our study broadens the applicability of these inequalities and shows that they are useful for a variety of convexity cases. Our results contribute to the advancement of mathematical analysis and provide useful information for theoretical comprehension as well as practical applications across several scientific directions.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.