{"title":"利用部分可观测性和不完整数据集的概率学习更新不确定喷嘴模型的非线性随机动力学特性","authors":"E. Capiez-Lernout, O. Ezvan, Christian Soize","doi":"10.1115/1.4065312","DOIUrl":null,"url":null,"abstract":"\n This paper introduces a methodology for updating the nonlinear stochastic dynamics of a nozzle with uncertain computational model. The approach focuses on a high-dimensional nonlinear computational model constrained by a small target dataset. Challenges include the large number of degrees-of-freedom, geometric nonlinearities, material uncertainties, stochastic external loads, under-observability, and high computational costs. A detailed dynamic analysis of the nozzle is presented. An updated statistical surrogate model relating the observations of interest to the control parameters is constructed. Despite small training and target datasets, and partial observability, the study successfully applies Probabilistic Learning on Manifolds (PLoM) to address these challenges. PLoM captures geometric nonlinear effects and uncertainty propagation, improving conditional mean statistics compared to training data. The conditional confidence region demonstrates the ability of the methodology to accurately represent both observed and unobserved output variables, contributing to advancements in modeling complex systems.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updating Nonlinear Stochastic Dynamics of an Uncertain Nozzle Model using Probabilistic Learning with Partial Observability and Incomplete dataset\",\"authors\":\"E. Capiez-Lernout, O. Ezvan, Christian Soize\",\"doi\":\"10.1115/1.4065312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper introduces a methodology for updating the nonlinear stochastic dynamics of a nozzle with uncertain computational model. The approach focuses on a high-dimensional nonlinear computational model constrained by a small target dataset. Challenges include the large number of degrees-of-freedom, geometric nonlinearities, material uncertainties, stochastic external loads, under-observability, and high computational costs. A detailed dynamic analysis of the nozzle is presented. An updated statistical surrogate model relating the observations of interest to the control parameters is constructed. Despite small training and target datasets, and partial observability, the study successfully applies Probabilistic Learning on Manifolds (PLoM) to address these challenges. PLoM captures geometric nonlinear effects and uncertainty propagation, improving conditional mean statistics compared to training data. The conditional confidence region demonstrates the ability of the methodology to accurately represent both observed and unobserved output variables, contributing to advancements in modeling complex systems.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065312\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065312","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Updating Nonlinear Stochastic Dynamics of an Uncertain Nozzle Model using Probabilistic Learning with Partial Observability and Incomplete dataset
This paper introduces a methodology for updating the nonlinear stochastic dynamics of a nozzle with uncertain computational model. The approach focuses on a high-dimensional nonlinear computational model constrained by a small target dataset. Challenges include the large number of degrees-of-freedom, geometric nonlinearities, material uncertainties, stochastic external loads, under-observability, and high computational costs. A detailed dynamic analysis of the nozzle is presented. An updated statistical surrogate model relating the observations of interest to the control parameters is constructed. Despite small training and target datasets, and partial observability, the study successfully applies Probabilistic Learning on Manifolds (PLoM) to address these challenges. PLoM captures geometric nonlinear effects and uncertainty propagation, improving conditional mean statistics compared to training data. The conditional confidence region demonstrates the ability of the methodology to accurately represent both observed and unobserved output variables, contributing to advancements in modeling complex systems.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping