基于灵敏度分析和沃尔夫法的快速二次模型预测控制

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-04-14 DOI:10.1049/cth2.12642
Hamid Kalantari, Mohsen Mojiri, Javad Askari, Najmeh Zamani
{"title":"基于灵敏度分析和沃尔夫法的快速二次模型预测控制","authors":"Hamid Kalantari,&nbsp;Mohsen Mojiri,&nbsp;Javad Askari,&nbsp;Najmeh Zamani","doi":"10.1049/cth2.12642","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a new algorithm based on sensitivity analysis and the Wolfe method to solve a sequence of parametric quadratic programming (QP) problems such as those that arise in quadratic model predictive control (QMPC). The Wolfe method, based on Karush–Kuhn–Tucker conditions, has been used to convert parametric QP problems to parametric linear programming (LP) problems, and then the sensitivity analysis is applied to solve the sequence of the parametric LP problems. This strategy obtains sensitivity analysis-based QMPC (SA-QMPC) algorithm. It is proved that the computational complexity of SA-QMPC is <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>N</mi>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(Nn^2)$</annotation>\n </semantics></math> for a region of the initial conditions and <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>N</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(N^2n^2)$</annotation>\n </semantics></math> for sufficiently small sampling time and all initial conditions, where <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> are the horizon time and dimension of the state vector, respectively. Numerical results indicate the potential and properties of the proposed algorithm.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 9","pages":"1126-1135"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12642","citationCount":"0","resultStr":"{\"title\":\"Fast quadratic model predictive control based on sensitivity analysis and Wolfe method\",\"authors\":\"Hamid Kalantari,&nbsp;Mohsen Mojiri,&nbsp;Javad Askari,&nbsp;Najmeh Zamani\",\"doi\":\"10.1049/cth2.12642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a new algorithm based on sensitivity analysis and the Wolfe method to solve a sequence of parametric quadratic programming (QP) problems such as those that arise in quadratic model predictive control (QMPC). The Wolfe method, based on Karush–Kuhn–Tucker conditions, has been used to convert parametric QP problems to parametric linear programming (LP) problems, and then the sensitivity analysis is applied to solve the sequence of the parametric LP problems. This strategy obtains sensitivity analysis-based QMPC (SA-QMPC) algorithm. It is proved that the computational complexity of SA-QMPC is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mi>N</mi>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O(Nn^2)$</annotation>\\n </semantics></math> for a region of the initial conditions and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>O</mi>\\n <mo>(</mo>\\n <msup>\\n <mi>N</mi>\\n <mn>2</mn>\\n </msup>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$O(N^2n^2)$</annotation>\\n </semantics></math> for sufficiently small sampling time and all initial conditions, where <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> are the horizon time and dimension of the state vector, respectively. Numerical results indicate the potential and properties of the proposed algorithm.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 9\",\"pages\":\"1126-1135\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12642\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12642\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12642","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于灵敏度分析和沃尔夫法的新算法,用于求解参数二次编程(QP)问题序列,如二次模型预测控制(QMPC)中出现的问题。Wolfe 方法基于 Karush-Kuhn-Tucker 条件,用于将参数 QP 问题转换为参数线性规划(LP)问题,然后应用灵敏度分析来求解参数 LP 问题序列。这种策略得到了基于灵敏度分析的 QMPC(SA-QMPC)算法。研究证明,SA-QMPC 的计算复杂度是在初始条件区域内,以及在足够小的采样时间和所有初始条件下的计算复杂度。数值结果表明了所提算法的潜力和特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast quadratic model predictive control based on sensitivity analysis and Wolfe method

This paper proposes a new algorithm based on sensitivity analysis and the Wolfe method to solve a sequence of parametric quadratic programming (QP) problems such as those that arise in quadratic model predictive control (QMPC). The Wolfe method, based on Karush–Kuhn–Tucker conditions, has been used to convert parametric QP problems to parametric linear programming (LP) problems, and then the sensitivity analysis is applied to solve the sequence of the parametric LP problems. This strategy obtains sensitivity analysis-based QMPC (SA-QMPC) algorithm. It is proved that the computational complexity of SA-QMPC is O ( N n 2 ) $O(Nn^2)$ for a region of the initial conditions and O ( N 2 n 2 ) $O(N^2n^2)$ for sufficiently small sampling time and all initial conditions, where N $N$ and n $n$ are the horizon time and dimension of the state vector, respectively. Numerical results indicate the potential and properties of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Precise orientation control of gimbals with parametric variations using model reference adaptive controller Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients Observer-based adaptive control of vehicle platoon with uncertainty and input constraints An improved two-degree-of-freedom ADRC for asynchronous motor vector system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1