Adaptive Dynamic Surface Control for High-Order Strict-Feedback Systems With Input Saturation: A Fully Actuated System Approach

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2025-02-22 DOI:10.1049/cth2.70010
Yongqiang Xiao, Guangbin Cai, Mingrui Hao
{"title":"Adaptive Dynamic Surface Control for High-Order Strict-Feedback Systems With Input Saturation: A Fully Actuated System Approach","authors":"Yongqiang Xiao,&nbsp;Guangbin Cai,&nbsp;Mingrui Hao","doi":"10.1049/cth2.70010","DOIUrl":null,"url":null,"abstract":"<p>We introduce an adaptive dynamic surface control (ADSC) method tailored for high-order strict-feedback systems (SFSs) with input saturation, utilizing the fully actuated system (FAS) approach. We simplify the steps in designing the controller by combining the FAS approach with ADSC method to directly control each high-order subsystem as a complete entity, without the need to transform it into first-order systems. Smooth functions and Nussbaum functions are applied to solve the problem of input saturation. We use a sequence of low-pass filters to calculate the higher-order derivatives of the virtual control law. Lyapunov stability theory is used to demonstrate that all signals within the closed-loop system become uniformly bounded, with the tracking error ultimately converging to a small vicinity around zero. We validated the efficiency of the proposed method of control through simulations on a flexible joint manipulator system. In contrast to the traditional first-order system method, which requires four virtual control laws, the proposed method in this paper necessitates only two, resulting in a smaller initial value of the control input.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.70010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.70010","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an adaptive dynamic surface control (ADSC) method tailored for high-order strict-feedback systems (SFSs) with input saturation, utilizing the fully actuated system (FAS) approach. We simplify the steps in designing the controller by combining the FAS approach with ADSC method to directly control each high-order subsystem as a complete entity, without the need to transform it into first-order systems. Smooth functions and Nussbaum functions are applied to solve the problem of input saturation. We use a sequence of low-pass filters to calculate the higher-order derivatives of the virtual control law. Lyapunov stability theory is used to demonstrate that all signals within the closed-loop system become uniformly bounded, with the tracking error ultimately converging to a small vicinity around zero. We validated the efficiency of the proposed method of control through simulations on a flexible joint manipulator system. In contrast to the traditional first-order system method, which requires four virtual control laws, the proposed method in this paper necessitates only two, resulting in a smaller initial value of the control input.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Adaptive Dynamic Surface Control for High-Order Strict-Feedback Systems With Input Saturation: A Fully Actuated System Approach Fixed-Time Fault-Tolerant Dynamic Formation Control for Heterogeneous Multi-Agent Systems With Communication Link Faults for Collaborative Wildfire Monitoring Adaptive Vibration Control of the Moving Cage in the 4 × $\times$ 4 Hyperbolic PDE-ODE Model of the Dual-Cable Mining Elevator Error-Based Virtual Compound Axis With Backstepping Control for Electro-Optical Tracking System Optimal Control Using IsoCost-Based Dynamic Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1