氮改性石墨烯氧化物镍涂层的电化学沉积及其特性

Vitaly Tseluikin, A. Dzhumieva, A. Tribis, Sergey Brudnik, Denis Tikhonov, A. Yakovlev, A. Mostovoy, M. Lopukhova
{"title":"氮改性石墨烯氧化物镍涂层的电化学沉积及其特性","authors":"Vitaly Tseluikin, A. Dzhumieva, A. Tribis, Sergey Brudnik, Denis Tikhonov, A. Yakovlev, A. Mostovoy, M. Lopukhova","doi":"10.3390/jcs8040147","DOIUrl":null,"url":null,"abstract":"In this study, a method for producing nitrogen-modified graphene oxide (NMGO) using hydrothermal synthesis in the presence of triethanolamine is presented. The composition and structure of NMGO are characterized using X-ray phase analysis (XPA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. Ni-based metal matrix coatings (MMCs) modified with NMGO were obtained from a sulfate-chloride electrolyte in the galvanostatic mode. The process of electrochemical deposition of these coatings was studied using chronovoltammetry. The microstructure of Ni–NMGO MMCs was studied using the XPA and SEM methods. It has been established that the addition of NMGO particles into the Ni matrix results in an increase in the microhardness of the resulting coatings by an average of 1.30 times. This effect is a consequence of the refinement of crystallites and high mechanical properties of NMGO phase. The corrosion-electrochemical behavior of studied electrochemical deposits in 0.5 M sulfuric acid was analyzed. It has been shown that the corrosion rate of Ni–NMGO MMCs in a 3.5% sodium chloride environment decreases by approximately 1.50–1.70 times as compared to unmodified Ni coatings. This is due to NMGO particles that act as a barrier preventing the propagation of the corrosion and form corrosive galvanic microelements with Ni, promoting anodic polarization.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"53 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Deposition and Properties of Ni Coatings with Nitrogen-Modified Graphene Oxide\",\"authors\":\"Vitaly Tseluikin, A. Dzhumieva, A. Tribis, Sergey Brudnik, Denis Tikhonov, A. Yakovlev, A. Mostovoy, M. Lopukhova\",\"doi\":\"10.3390/jcs8040147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a method for producing nitrogen-modified graphene oxide (NMGO) using hydrothermal synthesis in the presence of triethanolamine is presented. The composition and structure of NMGO are characterized using X-ray phase analysis (XPA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. Ni-based metal matrix coatings (MMCs) modified with NMGO were obtained from a sulfate-chloride electrolyte in the galvanostatic mode. The process of electrochemical deposition of these coatings was studied using chronovoltammetry. The microstructure of Ni–NMGO MMCs was studied using the XPA and SEM methods. It has been established that the addition of NMGO particles into the Ni matrix results in an increase in the microhardness of the resulting coatings by an average of 1.30 times. This effect is a consequence of the refinement of crystallites and high mechanical properties of NMGO phase. The corrosion-electrochemical behavior of studied electrochemical deposits in 0.5 M sulfuric acid was analyzed. It has been shown that the corrosion rate of Ni–NMGO MMCs in a 3.5% sodium chloride environment decreases by approximately 1.50–1.70 times as compared to unmodified Ni coatings. This is due to NMGO particles that act as a barrier preventing the propagation of the corrosion and form corrosive galvanic microelements with Ni, promoting anodic polarization.\",\"PeriodicalId\":502935,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":\"53 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8040147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种在三乙醇胺存在下利用水热合成法生产氮改性氧化石墨烯(NMGO)的方法。利用 X 射线相分析 (XPA)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱和拉曼光谱对 NMGO 的组成和结构进行了表征。在硫酸盐-氯化物电解液中以电静电模式获得了用 NMGO 修饰的镍基金属基体涂层(MMC)。使用计时伏安法研究了这些涂层的电化学沉积过程。使用 XPA 和 SEM 方法研究了 Ni-NMGO MMC 的微观结构。结果表明,在镍基体中加入 NMGO 颗粒后,涂层的显微硬度平均提高了 1.30 倍。这种效应是 NMGO 相晶粒细化和高机械性能的结果。对所研究的电化学沉积物在 0.5 M 硫酸中的腐蚀-电化学行为进行了分析。结果表明,在 3.5% 的氯化钠环境中,Ni-NMGO MMC 的腐蚀速率比未改性的 Ni 涂层降低了约 1.50-1.70 倍。这是由于 NMGO 颗粒起到了阻挡腐蚀扩散的作用,并与镍形成了腐蚀性电化微元素,促进了阳极极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrochemical Deposition and Properties of Ni Coatings with Nitrogen-Modified Graphene Oxide
In this study, a method for producing nitrogen-modified graphene oxide (NMGO) using hydrothermal synthesis in the presence of triethanolamine is presented. The composition and structure of NMGO are characterized using X-ray phase analysis (XPA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. Ni-based metal matrix coatings (MMCs) modified with NMGO were obtained from a sulfate-chloride electrolyte in the galvanostatic mode. The process of electrochemical deposition of these coatings was studied using chronovoltammetry. The microstructure of Ni–NMGO MMCs was studied using the XPA and SEM methods. It has been established that the addition of NMGO particles into the Ni matrix results in an increase in the microhardness of the resulting coatings by an average of 1.30 times. This effect is a consequence of the refinement of crystallites and high mechanical properties of NMGO phase. The corrosion-electrochemical behavior of studied electrochemical deposits in 0.5 M sulfuric acid was analyzed. It has been shown that the corrosion rate of Ni–NMGO MMCs in a 3.5% sodium chloride environment decreases by approximately 1.50–1.70 times as compared to unmodified Ni coatings. This is due to NMGO particles that act as a barrier preventing the propagation of the corrosion and form corrosive galvanic microelements with Ni, promoting anodic polarization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars Properties of Composites Based on Polylactide Filled with Cork Filler Influence of Silica Nanoparticles on the Physical Properties of Random Polypropylene Analytical and Experimental Behaviour of GFRP-Reinforced Concrete Columns under Fire Loading Mechanical Characterization of Hybrid Steel Wire Mesh/Basalt/Epoxy Fiber-Reinforced Polymer Composite Laminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1