Mark Patterson, Nelson Xie, Kyle Beurlot, Timothy J. Jacobs, Daniel B. Olsen
{"title":"带预室点火装置的大口径天然气发动机未燃烧甲烷排放机理分析","authors":"Mark Patterson, Nelson Xie, Kyle Beurlot, Timothy J. Jacobs, Daniel B. Olsen","doi":"10.1115/1.4065313","DOIUrl":null,"url":null,"abstract":"\n Although pre-combustion chambers, or prechambers, have long been employed for improving large-bore two-stroke natural gas engine ignition and combustion stability, their design predates modern analysis techniques. Employing the latest CFD modeling techniques, this study investigates the importance of temperature and chemistry for ignition of the main chamber, with an emphasis on eliminating unburned methane. The sensitivity of the ignition and complete combustion to main chamber air/fuel mixture homogeneity was also explored. This study compares the effect of purely thermal ignition, purely chemical ignition, and how their interplay can influence the complete combustion of methane in typical mixtures and in homogeneous distributions of fuel in the combustion chamber. The CFD results demonstrated that temperature and chemistry are equally important in the ignition mechanism, and combining the two phenomena is effective at igniting the main chamber. Reduction of residual methane in the main combustion chamber is most effective when chemical intermediates and thermal ignition are combined. A rudimentary analysis of the effect of fuel/air stratification was also conducted, and it demonstrated that a dramatic reduction in methane emissions is observed for homogeneous mixtures. The flow field in the main combustion chamber was shown to create detrimental stratification of the fuel/air mixture, which inhibited complete combustion of the methane in the main chamber. By contrast, in the extreme case of a perfectly homogeneous distribution of both chemical intermediates and fuel in the combustion chamber, it is possible to completely eliminate unburned methane in the main combustion chamber.","PeriodicalId":508252,"journal":{"name":"Journal of Engineering for Gas Turbines and Power","volume":"58 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Unburned Methane Emission Mechanisms in Large-Bore Natural Gas Engines with Prechamber Ignition\",\"authors\":\"Mark Patterson, Nelson Xie, Kyle Beurlot, Timothy J. Jacobs, Daniel B. Olsen\",\"doi\":\"10.1115/1.4065313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Although pre-combustion chambers, or prechambers, have long been employed for improving large-bore two-stroke natural gas engine ignition and combustion stability, their design predates modern analysis techniques. Employing the latest CFD modeling techniques, this study investigates the importance of temperature and chemistry for ignition of the main chamber, with an emphasis on eliminating unburned methane. The sensitivity of the ignition and complete combustion to main chamber air/fuel mixture homogeneity was also explored. This study compares the effect of purely thermal ignition, purely chemical ignition, and how their interplay can influence the complete combustion of methane in typical mixtures and in homogeneous distributions of fuel in the combustion chamber. The CFD results demonstrated that temperature and chemistry are equally important in the ignition mechanism, and combining the two phenomena is effective at igniting the main chamber. Reduction of residual methane in the main combustion chamber is most effective when chemical intermediates and thermal ignition are combined. A rudimentary analysis of the effect of fuel/air stratification was also conducted, and it demonstrated that a dramatic reduction in methane emissions is observed for homogeneous mixtures. The flow field in the main combustion chamber was shown to create detrimental stratification of the fuel/air mixture, which inhibited complete combustion of the methane in the main chamber. By contrast, in the extreme case of a perfectly homogeneous distribution of both chemical intermediates and fuel in the combustion chamber, it is possible to completely eliminate unburned methane in the main combustion chamber.\",\"PeriodicalId\":508252,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Unburned Methane Emission Mechanisms in Large-Bore Natural Gas Engines with Prechamber Ignition
Although pre-combustion chambers, or prechambers, have long been employed for improving large-bore two-stroke natural gas engine ignition and combustion stability, their design predates modern analysis techniques. Employing the latest CFD modeling techniques, this study investigates the importance of temperature and chemistry for ignition of the main chamber, with an emphasis on eliminating unburned methane. The sensitivity of the ignition and complete combustion to main chamber air/fuel mixture homogeneity was also explored. This study compares the effect of purely thermal ignition, purely chemical ignition, and how their interplay can influence the complete combustion of methane in typical mixtures and in homogeneous distributions of fuel in the combustion chamber. The CFD results demonstrated that temperature and chemistry are equally important in the ignition mechanism, and combining the two phenomena is effective at igniting the main chamber. Reduction of residual methane in the main combustion chamber is most effective when chemical intermediates and thermal ignition are combined. A rudimentary analysis of the effect of fuel/air stratification was also conducted, and it demonstrated that a dramatic reduction in methane emissions is observed for homogeneous mixtures. The flow field in the main combustion chamber was shown to create detrimental stratification of the fuel/air mixture, which inhibited complete combustion of the methane in the main chamber. By contrast, in the extreme case of a perfectly homogeneous distribution of both chemical intermediates and fuel in the combustion chamber, it is possible to completely eliminate unburned methane in the main combustion chamber.