元素结晶源薄膜的化学气相沉积

Pierre Tomasini
{"title":"元素结晶源薄膜的化学气相沉积","authors":"Pierre Tomasini","doi":"10.1149/2162-8777/ad3e2f","DOIUrl":null,"url":null,"abstract":"\n A consolidation of the fundamentals of elemental crystallogen chemical vapor deposition (CVD) is a necessity in view of the extensive evidence accumulated over the last few decades. An in-depth understanding of deposition mechanisms via hydrides asks for a discerning understanding of molecular hydrogen dissociative adsorption, precursor thermal decomposition, and CVD growth rates. With those, a groundbreaking paradigm shift comes to light. GR activation energy E(GR) fingerprints the surface energy. SE ≈ 2E(GR) / (aa), where SE is surface energy, E(GR) activation energy, a lattice parameter. Hydride precursor thermal decomposition consistency with the corresponding solid growth kinetics is demonstrated. Heterogeneous TD kinetics captures a solid deposition and not a gas phase molecular reaction. Thermodynamic equilibrium is achieved during the heterogeneous thermal decomposition of silicon precursors. The popular split between mass-transfer and kinetic regimes is not supported by evidence. Three mechanisms are apparent. The first is controlled by a Si–H bond dissociation energy. The second is controlled by an H–H bond dissociation energy. The last is controlled by a Si–Si bond dissociation energy as lattice sites are sealed off with Si–H bonds.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Vapor Deposition of Elemental Crystallogen Thin Films\",\"authors\":\"Pierre Tomasini\",\"doi\":\"10.1149/2162-8777/ad3e2f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A consolidation of the fundamentals of elemental crystallogen chemical vapor deposition (CVD) is a necessity in view of the extensive evidence accumulated over the last few decades. An in-depth understanding of deposition mechanisms via hydrides asks for a discerning understanding of molecular hydrogen dissociative adsorption, precursor thermal decomposition, and CVD growth rates. With those, a groundbreaking paradigm shift comes to light. GR activation energy E(GR) fingerprints the surface energy. SE ≈ 2E(GR) / (aa), where SE is surface energy, E(GR) activation energy, a lattice parameter. Hydride precursor thermal decomposition consistency with the corresponding solid growth kinetics is demonstrated. Heterogeneous TD kinetics captures a solid deposition and not a gas phase molecular reaction. Thermodynamic equilibrium is achieved during the heterogeneous thermal decomposition of silicon precursors. The popular split between mass-transfer and kinetic regimes is not supported by evidence. Three mechanisms are apparent. The first is controlled by a Si–H bond dissociation energy. The second is controlled by an H–H bond dissociation energy. The last is controlled by a Si–Si bond dissociation energy as lattice sites are sealed off with Si–H bonds.\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad3e2f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad3e2f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于过去几十年来积累的大量证据,有必要对元素晶原化学气相沉积(CVD)的基本原理进行整合。要深入了解氢化物的沉积机理,就必须对分子氢离解吸附、前驱体热分解和 CVD 生长率有清晰的认识。有了这些,一个突破性的范式转变就会出现。GR活化能 E(GR) 是表面能的指纹。SE ≈ 2E(GR) / (aa),其中 SE 为表面能,E(GR) 为活化能,为晶格参数。氢化物前驱体的热分解与相应的固体生长动力学相一致。异质 TD 动力学捕捉到的是固体沉积而非气相分子反应。在硅前驱体的异相热分解过程中实现了热力学平衡。目前流行的将质量传递和动力学机制割裂开来的观点没有证据支持。有三种机制是显而易见的。第一种由硅-H 键解离能控制。第二种受 H-H 键解离能控制。最后一种机制受 Si-Si 键解离能控制,因为晶格位点被 Si-H 键封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chemical Vapor Deposition of Elemental Crystallogen Thin Films
A consolidation of the fundamentals of elemental crystallogen chemical vapor deposition (CVD) is a necessity in view of the extensive evidence accumulated over the last few decades. An in-depth understanding of deposition mechanisms via hydrides asks for a discerning understanding of molecular hydrogen dissociative adsorption, precursor thermal decomposition, and CVD growth rates. With those, a groundbreaking paradigm shift comes to light. GR activation energy E(GR) fingerprints the surface energy. SE ≈ 2E(GR) / (aa), where SE is surface energy, E(GR) activation energy, a lattice parameter. Hydride precursor thermal decomposition consistency with the corresponding solid growth kinetics is demonstrated. Heterogeneous TD kinetics captures a solid deposition and not a gas phase molecular reaction. Thermodynamic equilibrium is achieved during the heterogeneous thermal decomposition of silicon precursors. The popular split between mass-transfer and kinetic regimes is not supported by evidence. Three mechanisms are apparent. The first is controlled by a Si–H bond dissociation energy. The second is controlled by an H–H bond dissociation energy. The last is controlled by a Si–Si bond dissociation energy as lattice sites are sealed off with Si–H bonds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Calcination Temperature on the Structural, Morphological, and Magnetic Properties of Rare-Earth Orthoferrite NdFeO3 Nanoparticles Synthesized by the Sol-Gel Method Up-Conversion Luminescence and Optical Temperature Sensing of Tb3+, Yb3+, Er3+ Doped (Gd, Y, Lu)2O2S Series Phosphors Study of Two Inorganic Particles in PMMA Electrochromic Devices Based on the Difference of Work Function Effect of Zr, Sm and Gd Doped CoFe2O4 on Structural, Spectral and Magnetic Properties Exploring Magnetic Attributes: Borospherene-Like and Buckminsterfullerene-Like Lattices in Monte Carlo Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1