{"title":"评估滴灌作物相对吸水率的简单方法","authors":"Shmulik P. Friedman","doi":"10.1002/ird.2956","DOIUrl":null,"url":null,"abstract":"<p>Drip irrigation is widely acknowledged for its water use efficiency, yet evaluating relative water uptake rates (RWURs, ratios between the water uptake rates and the irrigation rates) remains pivotal for effective system design and management. This article presents a novel method employing straightforward measurements of wetted soil surfaces around emitters or perpendicular to driplines, both with and without water uptake, emphasizing simplicity and practicality. The proposed method offers valuable insights into agronomic water use efficiency, facilitating the optimization of drip irrigation for both annual and perennial crops. While effective for intensively irrigated crops, the method does have limitations for smaller wetted areas and longer irrigation cycles, depending also upon a reasonable determination of the active root zone depth and the soil capillary length. Despite relying on a simplified water uptake model, the accessibility and cost-effectiveness of the method render it a valuable tool for assessing RWURs in diverse agricultural settings, contributing to the sustainable utilization of water resources in drip irrigation.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1231-1245"},"PeriodicalIF":1.6000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2956","citationCount":"0","resultStr":"{\"title\":\"A simple method for evaluating the relative water uptake rate of drip-irrigated crops\",\"authors\":\"Shmulik P. Friedman\",\"doi\":\"10.1002/ird.2956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drip irrigation is widely acknowledged for its water use efficiency, yet evaluating relative water uptake rates (RWURs, ratios between the water uptake rates and the irrigation rates) remains pivotal for effective system design and management. This article presents a novel method employing straightforward measurements of wetted soil surfaces around emitters or perpendicular to driplines, both with and without water uptake, emphasizing simplicity and practicality. The proposed method offers valuable insights into agronomic water use efficiency, facilitating the optimization of drip irrigation for both annual and perennial crops. While effective for intensively irrigated crops, the method does have limitations for smaller wetted areas and longer irrigation cycles, depending also upon a reasonable determination of the active root zone depth and the soil capillary length. Despite relying on a simplified water uptake model, the accessibility and cost-effectiveness of the method render it a valuable tool for assessing RWURs in diverse agricultural settings, contributing to the sustainable utilization of water resources in drip irrigation.</p>\",\"PeriodicalId\":14848,\"journal\":{\"name\":\"Irrigation and Drainage\",\"volume\":\"73 4\",\"pages\":\"1231-1245\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2956\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irrigation and Drainage\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird.2956\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2956","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
A simple method for evaluating the relative water uptake rate of drip-irrigated crops
Drip irrigation is widely acknowledged for its water use efficiency, yet evaluating relative water uptake rates (RWURs, ratios between the water uptake rates and the irrigation rates) remains pivotal for effective system design and management. This article presents a novel method employing straightforward measurements of wetted soil surfaces around emitters or perpendicular to driplines, both with and without water uptake, emphasizing simplicity and practicality. The proposed method offers valuable insights into agronomic water use efficiency, facilitating the optimization of drip irrigation for both annual and perennial crops. While effective for intensively irrigated crops, the method does have limitations for smaller wetted areas and longer irrigation cycles, depending also upon a reasonable determination of the active root zone depth and the soil capillary length. Despite relying on a simplified water uptake model, the accessibility and cost-effectiveness of the method render it a valuable tool for assessing RWURs in diverse agricultural settings, contributing to the sustainable utilization of water resources in drip irrigation.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.