{"title":"基于半胱氨酸的动态自组装及其在生命起源中的重要性","authors":"Soumen Kuila, Jayanta Nanda","doi":"10.1002/syst.202400022","DOIUrl":null,"url":null,"abstract":"<p>The knowledge regarding the origins of life from inanimate materials is still elusive. It was proposed that biological building blocks evolved from the inorganic substances present in the early earth conditions. However, the process by which chemistry can be converted into biology has not yet been achieved in the laboratory. The artificial system in the out-of-equilibrium state must maintain a few critical features of life, like compartmentalization, metabolism, and replication, to be considered alive. In this direction, working with cysteine (Cys)-based molecules is strategic to understand the life evolution process. The presence of the sulphydryl (−SH) group in the Cys-residue can build a dynamic equilibrium state through disulfide redox chemistry under the proper guidance of oxidizing and reducing agents. In this review article, our primary focus is to discuss the Cys-containing short-peptide-based self-assembly and disassembly processes. The formation of disulfide bonds sometimes helps in the self-assembly process and gelation, but the reverse is also true in some cases. In the later part of this article, we cover the fact that these sulphydryl-based systems have shown their adaptability to mimic different life-essential criteria to participate in Darwinian evolution.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"6 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cysteine-Based Dynamic Self-Assembly and Their Importance in the Origins of Life\",\"authors\":\"Soumen Kuila, Jayanta Nanda\",\"doi\":\"10.1002/syst.202400022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The knowledge regarding the origins of life from inanimate materials is still elusive. It was proposed that biological building blocks evolved from the inorganic substances present in the early earth conditions. However, the process by which chemistry can be converted into biology has not yet been achieved in the laboratory. The artificial system in the out-of-equilibrium state must maintain a few critical features of life, like compartmentalization, metabolism, and replication, to be considered alive. In this direction, working with cysteine (Cys)-based molecules is strategic to understand the life evolution process. The presence of the sulphydryl (−SH) group in the Cys-residue can build a dynamic equilibrium state through disulfide redox chemistry under the proper guidance of oxidizing and reducing agents. In this review article, our primary focus is to discuss the Cys-containing short-peptide-based self-assembly and disassembly processes. The formation of disulfide bonds sometimes helps in the self-assembly process and gelation, but the reverse is also true in some cases. In the later part of this article, we cover the fact that these sulphydryl-based systems have shown their adaptability to mimic different life-essential criteria to participate in Darwinian evolution.</p>\",\"PeriodicalId\":72566,\"journal\":{\"name\":\"ChemSystemsChem\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSystemsChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/syst.202400022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/syst.202400022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cysteine-Based Dynamic Self-Assembly and Their Importance in the Origins of Life
The knowledge regarding the origins of life from inanimate materials is still elusive. It was proposed that biological building blocks evolved from the inorganic substances present in the early earth conditions. However, the process by which chemistry can be converted into biology has not yet been achieved in the laboratory. The artificial system in the out-of-equilibrium state must maintain a few critical features of life, like compartmentalization, metabolism, and replication, to be considered alive. In this direction, working with cysteine (Cys)-based molecules is strategic to understand the life evolution process. The presence of the sulphydryl (−SH) group in the Cys-residue can build a dynamic equilibrium state through disulfide redox chemistry under the proper guidance of oxidizing and reducing agents. In this review article, our primary focus is to discuss the Cys-containing short-peptide-based self-assembly and disassembly processes. The formation of disulfide bonds sometimes helps in the self-assembly process and gelation, but the reverse is also true in some cases. In the later part of this article, we cover the fact that these sulphydryl-based systems have shown their adaptability to mimic different life-essential criteria to participate in Darwinian evolution.