B. S. Nathan, B. V. Siva Reddy, C. C. Sastry, J. Krishnaiah, K. V. Eswaramoorthy
{"title":"汽车行业有效服务配件管理的创新框架","authors":"B. S. Nathan, B. V. Siva Reddy, C. C. Sastry, J. Krishnaiah, K. V. Eswaramoorthy","doi":"10.3389/fmech.2024.1361688","DOIUrl":null,"url":null,"abstract":"Effective service parts management and demand forecasting are crucial for optimizing operations in the automotive industry. However, existing literature lacks a comprehensive framework tailored to the specific context of the Thai automotive sector. This study addresses this gap by proposing a strategic approach to service parts management and demand forecasting in the Thai automotive industry. Drawing on a diverse set of methodologies, including classical time series models and advanced machine learning techniques, various forecasting models were assessed to identify the most effective approach for predicting service parts demand. Categorization of service parts based on demand criteria was conducted, and decision rules were developed to guide stocking strategies, balancing the need to minimize service disruptions with cost optimization. This analysis reveals substantial cost savings potential through strategic stocking guided by the developed decision rules. Furthermore, evaluation of the performance of different forecasting models recommends the adoption of Support Vector Regressor (SVR) as the most accurate model for forecasting service parts demand in this context. This research contributes to the automotive service industry by providing a nuanced framework for service parts management and demand forecasting, leading to cost-effective operations and enhanced service quality. The findings offer valuable insights for practitioners and policymakers seeking to improve efficiency and sustainability in the Thai automotive sector.","PeriodicalId":53220,"journal":{"name":"Frontiers in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative framework for effective service parts management in the automotive industry\",\"authors\":\"B. S. Nathan, B. V. Siva Reddy, C. C. Sastry, J. Krishnaiah, K. V. Eswaramoorthy\",\"doi\":\"10.3389/fmech.2024.1361688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective service parts management and demand forecasting are crucial for optimizing operations in the automotive industry. However, existing literature lacks a comprehensive framework tailored to the specific context of the Thai automotive sector. This study addresses this gap by proposing a strategic approach to service parts management and demand forecasting in the Thai automotive industry. Drawing on a diverse set of methodologies, including classical time series models and advanced machine learning techniques, various forecasting models were assessed to identify the most effective approach for predicting service parts demand. Categorization of service parts based on demand criteria was conducted, and decision rules were developed to guide stocking strategies, balancing the need to minimize service disruptions with cost optimization. This analysis reveals substantial cost savings potential through strategic stocking guided by the developed decision rules. Furthermore, evaluation of the performance of different forecasting models recommends the adoption of Support Vector Regressor (SVR) as the most accurate model for forecasting service parts demand in this context. This research contributes to the automotive service industry by providing a nuanced framework for service parts management and demand forecasting, leading to cost-effective operations and enhanced service quality. The findings offer valuable insights for practitioners and policymakers seeking to improve efficiency and sustainability in the Thai automotive sector.\",\"PeriodicalId\":53220,\"journal\":{\"name\":\"Frontiers in Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmech.2024.1361688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmech.2024.1361688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Innovative framework for effective service parts management in the automotive industry
Effective service parts management and demand forecasting are crucial for optimizing operations in the automotive industry. However, existing literature lacks a comprehensive framework tailored to the specific context of the Thai automotive sector. This study addresses this gap by proposing a strategic approach to service parts management and demand forecasting in the Thai automotive industry. Drawing on a diverse set of methodologies, including classical time series models and advanced machine learning techniques, various forecasting models were assessed to identify the most effective approach for predicting service parts demand. Categorization of service parts based on demand criteria was conducted, and decision rules were developed to guide stocking strategies, balancing the need to minimize service disruptions with cost optimization. This analysis reveals substantial cost savings potential through strategic stocking guided by the developed decision rules. Furthermore, evaluation of the performance of different forecasting models recommends the adoption of Support Vector Regressor (SVR) as the most accurate model for forecasting service parts demand in this context. This research contributes to the automotive service industry by providing a nuanced framework for service parts management and demand forecasting, leading to cost-effective operations and enhanced service quality. The findings offer valuable insights for practitioners and policymakers seeking to improve efficiency and sustainability in the Thai automotive sector.