通过与吉布斯抽样相结合的 ECM 在倾斜正态线性回归模型的形状混合物中进行估计

IF 0.8 Q3 STATISTICS & PROBABILITY Monte Carlo Methods and Applications Pub Date : 2024-04-11 DOI:10.1515/mcma-2024-2003
Zakaria Alizadeh Ghajari, Karim Zare, Soheil Shokri
{"title":"通过与吉布斯抽样相结合的 ECM 在倾斜正态线性回归模型的形状混合物中进行估计","authors":"Zakaria Alizadeh Ghajari, Karim Zare, Soheil Shokri","doi":"10.1515/mcma-2024-2003","DOIUrl":null,"url":null,"abstract":"\n In this paper, we study linear regression models in which the error term has shape mixtures of skew-normal distribution.\nThis type of distribution belongs to the skew-normal (SN) distribution class that can be used for heavy tails and asymmetry data.\nFor the first time, for the classical (non-Bayesian) estimation of the parameters of the SN family, we apply the Markov chains Monte Carlo ECM (MCMC-ECM) algorithm where the samples are generated by Gibbs sampling, denoted by Gibbs-ECM, and also, we extend two other types of the EM algorithm for the above model.\nFinally, the proposed method is evaluated through a simulation and compared with the Numerical Math-ECM algorithm and Monte Carlo ECM (MC-ECM) using a real data set.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling\",\"authors\":\"Zakaria Alizadeh Ghajari, Karim Zare, Soheil Shokri\",\"doi\":\"10.1515/mcma-2024-2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we study linear regression models in which the error term has shape mixtures of skew-normal distribution.\\nThis type of distribution belongs to the skew-normal (SN) distribution class that can be used for heavy tails and asymmetry data.\\nFor the first time, for the classical (non-Bayesian) estimation of the parameters of the SN family, we apply the Markov chains Monte Carlo ECM (MCMC-ECM) algorithm where the samples are generated by Gibbs sampling, denoted by Gibbs-ECM, and also, we extend two other types of the EM algorithm for the above model.\\nFinally, the proposed method is evaluated through a simulation and compared with the Numerical Math-ECM algorithm and Monte Carlo ECM (MC-ECM) using a real data set.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2024-2003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2024-2003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了误差项具有偏态正态分布形状混合物的线性回归模型。这种分布属于偏态正态分布(SN)类,可用于重尾和不对称数据。对于 SN 系列参数的经典(非贝叶斯)估计,我们首次应用了马尔可夫链蒙特卡罗 ECM(MCMC-ECM)算法,其中样本由吉布斯抽样生成,称为吉布斯-ECM,同时,我们还针对上述模型扩展了 EM 算法的其他两种类型。最后,我们通过模拟对所提出的方法进行了评估,并使用真实数据集将其与 Numerical Math-ECM 算法和蒙特卡罗 ECM(MC-ECM)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling
In this paper, we study linear regression models in which the error term has shape mixtures of skew-normal distribution. This type of distribution belongs to the skew-normal (SN) distribution class that can be used for heavy tails and asymmetry data. For the first time, for the classical (non-Bayesian) estimation of the parameters of the SN family, we apply the Markov chains Monte Carlo ECM (MCMC-ECM) algorithm where the samples are generated by Gibbs sampling, denoted by Gibbs-ECM, and also, we extend two other types of the EM algorithm for the above model. Finally, the proposed method is evaluated through a simulation and compared with the Numerical Math-ECM algorithm and Monte Carlo ECM (MC-ECM) using a real data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
期刊最新文献
Investigating the ecological fallacy through sampling distributions constructed from finite populations Joint application of the Monte Carlo method and computational probabilistic analysis in problems of numerical modeling with data uncertainties Choice of a constant in the expression for the error of the Monte Carlo method Estimation in shape mixtures of skew-normal linear regression models via ECM coupled with Gibbs sampling A gradient method for high-dimensional BSDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1