成纤维细胞基质植入物--切口疝修补术的更好选择?

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2024-04-11 DOI:10.1088/1748-605X/ad3da4
Siufui Hendrawan, J. Lheman, Ursula Weber, Christian Eugen Oberkofler, Astheria Eryani, René Vonlanthen, Hans Ulrich Baer
{"title":"成纤维细胞基质植入物--切口疝修补术的更好选择?","authors":"Siufui Hendrawan, J. Lheman, Ursula Weber, Christian Eugen Oberkofler, Astheria Eryani, René Vonlanthen, Hans Ulrich Baer","doi":"10.1088/1748-605X/ad3da4","DOIUrl":null,"url":null,"abstract":"The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a Fibroblast Matrix Implant (FMI), which is a three-dimensional (3D) Poly-L-lactic acid (PLLA) scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a Conditioned Medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 hours after seeding onto the matrix (n=3). To study the matrices in vivo, the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n=3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1 % CM hUC-MSC (FMI-CM group). In vitro examination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, the in vivo study showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14-day endpoint, but at the 28-day endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence. .","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fibroblast matrix implants - a better alternative for incisional hernia repair?\",\"authors\":\"Siufui Hendrawan, J. Lheman, Ursula Weber, Christian Eugen Oberkofler, Astheria Eryani, René Vonlanthen, Hans Ulrich Baer\",\"doi\":\"10.1088/1748-605X/ad3da4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a Fibroblast Matrix Implant (FMI), which is a three-dimensional (3D) Poly-L-lactic acid (PLLA) scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a Conditioned Medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 hours after seeding onto the matrix (n=3). To study the matrices in vivo, the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n=3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1 % CM hUC-MSC (FMI-CM group). In vitro examination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, the in vivo study showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14-day endpoint, but at the 28-day endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence. .\",\"PeriodicalId\":9016,\"journal\":{\"name\":\"Biomedical materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ad3da4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad3da4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用传统假体网片进行腹腔疝修补的标准手术程序仍会导致较高的复发率。在本研究中,我们提出了一种成纤维细胞基质植入物(FMI),它是一种涂有胶原蛋白(基质)并播种有成纤维细胞的三维(3D)聚左旋乳酸(PLLA)支架,可作为疝修补术的替代网片。基质中接种了成纤维细胞(细胞化),并用人类脐带间充质干细胞(hUC-MSC)的条件培养基(CM)进行处理。在基质上播种 24 小时后,对成纤维细胞的增殖和功能进行了评估,并比较了经 CM 处理的 hUC-MSC 组和未经处理的组(n=3)。为了研究体内基质,对雄性 Sprague Dawley 大鼠进行了疝气手术,并用四种不同的移植物(n=3)进行了修复,包括商用网片(网片组)、不含细胞的基质(无细胞组)、播种了成纤维细胞的基质(FMI 组)以及播种了成纤维细胞并在经 1% CM hUC-MSC 处理的培养基中培养的基质(FMI-CM 组)。体外检查显示,与未处理组相比,成纤维细胞在基质(处理组)上的增殖没有明显差异。CM hUC-间充质干细胞能促进成纤维细胞的胶原蛋白合成,从而使胶原蛋白浓度高于未处理组。此外,体内研究表明,基质允许成纤维细胞生长,并在植入后至少 1 个月内支持细胞功能。在 14 天的终点,FMI 组的成纤维细胞数量最多,但在 28 天的终点,FMI-CM 组的成纤维细胞数量最多。所有组别都观察到了植入部位的胶原沉积面积和新生血管,组间无明显差异。FMI与CM hUC-间充质干细胞结合可作为疝修补的更好选择,提供额外的加固,从而减少疝的复发。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fibroblast matrix implants - a better alternative for incisional hernia repair?
The standard surgical procedure for abdominal hernia repair with conventional prosthetic mesh still results in a high recurrence rate. In the present study, we propose a Fibroblast Matrix Implant (FMI), which is a three-dimensional (3D) Poly-L-lactic acid (PLLA) scaffold coated with collagen (matrix) and seeded with fibroblasts, as an alternative mesh for hernia repair. The matrix was seeded with fibroblasts (cellularized) and treated with a Conditioned Medium (CM) of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSC). Fibroblast proliferation and function were assessed and compared between treated with CM hUC-MSC and untreated group, 24 hours after seeding onto the matrix (n=3). To study the matrices in vivo, the hernia was surgically created on male Sprague Dawley rats and repaired with four different grafts (n=3), including a commercial mesh (mesh group), a matrix without cells (cell-free group), a matrix seeded with fibroblasts (FMI group), and a matrix seeded with fibroblasts and cultured in medium treated with 1 % CM hUC-MSC (FMI-CM group). In vitro examination showed that the fibroblasts' proliferation on the matrices (treated group) did not differ significantly compared to the untreated group. CM hUC-MSC was able to promote the collagen synthesis of the fibroblasts, resulting in a higher collagen concentration compared to the untreated group. Furthermore, the in vivo study showed that the matrices allowed fibroblast growth and supported cell functionality for at least 1 month after implantation. The highest number of fibroblasts was observed in the FMI group at the 14-day endpoint, but at the 28-day endpoint, the FMI-CM group had the highest. Collagen deposition area and neovascularization at the implantation site were observed in all groups without any significant difference between the groups. FMI combined with CM hUC-MSC may serve as a better option for hernia repair, providing additional reinforcement which in turn should reduce hernia recurrence. .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1