采用埋弧焊进行焊后热处理对 API X70 线路钢管微观结构和机械性能的影响

IF 0.7 4区 材料科学 Q4 METALLURGY & METALLURGICAL ENGINEERING Archives of Metallurgy and Materials Pub Date : 2024-04-10 DOI:10.24425/amm.2024.147794
Minha Park, Gang Ho Lee, Gwangjoo Jang, Hyoung-Chan Kim, Byoungkoo Kim, Byung Jun Kim
{"title":"采用埋弧焊进行焊后热处理对 API X70 线路钢管微观结构和机械性能的影响","authors":"Minha Park, Gang Ho Lee, Gwangjoo Jang, Hyoung-Chan Kim, Byoungkoo Kim, Byung Jun Kim","doi":"10.24425/amm.2024.147794","DOIUrl":null,"url":null,"abstract":"API X70 steel requires high strength and toughness for safety in extreme environments like high pressure and low temperature. Submerged Arc Welding (SAW ) is effective for manufacturing thick steel pipes. However, the welding heat input during SAW alters the microstructure and mechanical properties of the heat affected zone (HAZ). Therefore, investigating the correlation between microstructure and mechanical properties in welded X70 pipes is important to address potential degradation of HAZ and weld metal (WM). In this study, post weld heat treatment (PWHT) was performed to improve mechanical properties of HAZ and WM and to reduce residual stress caused by the welding process. We performed PWHT at 640°C for 15 hours and followed by air cooling. After heat treatment, we observed the microstructure through OM and SEM analysis, and investigated the mechanical properties through tensile test, hardness test, and Charpy impact test.","PeriodicalId":8304,"journal":{"name":"Archives of Metallurgy and Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Post Weld Heat Treatment on Microstructure and Mechanical Properties of API X70 Linepipe using Submerged Arc Welding\",\"authors\":\"Minha Park, Gang Ho Lee, Gwangjoo Jang, Hyoung-Chan Kim, Byoungkoo Kim, Byung Jun Kim\",\"doi\":\"10.24425/amm.2024.147794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"API X70 steel requires high strength and toughness for safety in extreme environments like high pressure and low temperature. Submerged Arc Welding (SAW ) is effective for manufacturing thick steel pipes. However, the welding heat input during SAW alters the microstructure and mechanical properties of the heat affected zone (HAZ). Therefore, investigating the correlation between microstructure and mechanical properties in welded X70 pipes is important to address potential degradation of HAZ and weld metal (WM). In this study, post weld heat treatment (PWHT) was performed to improve mechanical properties of HAZ and WM and to reduce residual stress caused by the welding process. We performed PWHT at 640°C for 15 hours and followed by air cooling. After heat treatment, we observed the microstructure through OM and SEM analysis, and investigated the mechanical properties through tensile test, hardness test, and Charpy impact test.\",\"PeriodicalId\":8304,\"journal\":{\"name\":\"Archives of Metallurgy and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Metallurgy and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.24425/amm.2024.147794\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Metallurgy and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.24425/amm.2024.147794","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

API X70 钢要求具有高强度和韧性,以便在高压和低温等极端环境中确保安全。埋弧焊(SAW)是制造厚钢管的有效方法。然而,埋弧焊时输入的焊接热量会改变热影响区(HAZ)的微观结构和机械性能。因此,研究 X70 焊接钢管的微观结构和机械性能之间的相关性对于解决热影响区和焊接金属 (WM) 的潜在退化问题非常重要。本研究采用焊后热处理 (PWHT) 来改善 HAZ 和 WM 的机械性能,并降低焊接过程中产生的残余应力。我们在 640°C 温度下进行了 15 小时的焊接后热处理,然后进行空气冷却。热处理后,我们通过 OM 和 SEM 分析观察了微观结构,并通过拉伸试验、硬度试验和夏比冲击试验研究了机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Post Weld Heat Treatment on Microstructure and Mechanical Properties of API X70 Linepipe using Submerged Arc Welding
API X70 steel requires high strength and toughness for safety in extreme environments like high pressure and low temperature. Submerged Arc Welding (SAW ) is effective for manufacturing thick steel pipes. However, the welding heat input during SAW alters the microstructure and mechanical properties of the heat affected zone (HAZ). Therefore, investigating the correlation between microstructure and mechanical properties in welded X70 pipes is important to address potential degradation of HAZ and weld metal (WM). In this study, post weld heat treatment (PWHT) was performed to improve mechanical properties of HAZ and WM and to reduce residual stress caused by the welding process. We performed PWHT at 640°C for 15 hours and followed by air cooling. After heat treatment, we observed the microstructure through OM and SEM analysis, and investigated the mechanical properties through tensile test, hardness test, and Charpy impact test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Metallurgy and Materials
Archives of Metallurgy and Materials 工程技术-冶金工程
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊介绍: The Archives of Metallurgy and Materials is covered in the following Institute for Scientific Information products: SciSearch (the Science Citation Index - Expanded), Research Alert, Materials Science Citation Index, and Current Contents / Engineering, Computing and Technology. Articles published in the Archives of Metallurgy and Materials are also indexed or abstracted by Cambridge Scientific Abstracts.
期刊最新文献
Influence of Particle Sizes and Volume Fractions on Fatigue Crack Growth Rates of Aerospace Al-Alloys Composites Investigation on Mechanical Properties of MAR-M247 Superalloy for Turbine Blades by Experiment and Simulation Dynamic Stability of the Periodic and Aperiodic Structures of the Bernoulli-Euler Beams Microstructure Evolution Through Cryogenic Rolling of Ultra-High Purity Titanium Produced by Electron Beam Melting Laser Weld Seam Curved Path Effect on 6063 Aluminum Alloy Strength and Temperature Distributions: COMSOL Numerical Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1