通过几何形状优化提高垂直地球空气热交换器(VEAHE)的冷却性能和经济性分析

IF 2.8 Q2 THERMODYNAMICS Heat Transfer Pub Date : 2024-04-10 DOI:10.1002/htj.23056
Mohammadreza Hasandust Rostami
{"title":"通过几何形状优化提高垂直地球空气热交换器(VEAHE)的冷却性能和经济性分析","authors":"Mohammadreza Hasandust Rostami","doi":"10.1002/htj.23056","DOIUrl":null,"url":null,"abstract":"<p>The cooling and heating sector is responsible for the highest energy consumption in the building sector, comprising approximately 30% of the total. Extensive research has been conducted to address this issue and minimize energy consumption through the implementation of innovative technologies. Among these technologies, the passive earth-air heat exchanger (EAHE) has proven highly effective in reducing energy usage in the cooling and heating sector. This research focused on optimizing U-shaped EAHE systems and examined their functional and thermal-fluidic parameters through numerical analysis. The simulation employed COMSOL Multiphysics software, and the results obtained were in excellent agreement with experimental data. The study investigated a base case, as well as five optimized cases with varying inlet velocities, to evaluate performance. The findings revealed that increasing the working fluid's inlet velocity led to a decrease in the system's thermal efficiency. However, at higher velocities, the economic parameters for energy production showed improvements. Specifically, the system generated a maximum energy output of 9132 W in the fifth case, operating at a velocity of 2 m/s. Additionally, the system achieved an impressive performance coefficient of approximately 5.13 in the same case, with an inlet velocity of 0.46 m/s. Notably, the lowest recorded output temperature of the system was 22°C at the specified inlet velocity.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing cooling performance and economic analysis of a vertical earth air heat exchanger (VEAHE) through geometric shape optimization\",\"authors\":\"Mohammadreza Hasandust Rostami\",\"doi\":\"10.1002/htj.23056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cooling and heating sector is responsible for the highest energy consumption in the building sector, comprising approximately 30% of the total. Extensive research has been conducted to address this issue and minimize energy consumption through the implementation of innovative technologies. Among these technologies, the passive earth-air heat exchanger (EAHE) has proven highly effective in reducing energy usage in the cooling and heating sector. This research focused on optimizing U-shaped EAHE systems and examined their functional and thermal-fluidic parameters through numerical analysis. The simulation employed COMSOL Multiphysics software, and the results obtained were in excellent agreement with experimental data. The study investigated a base case, as well as five optimized cases with varying inlet velocities, to evaluate performance. The findings revealed that increasing the working fluid's inlet velocity led to a decrease in the system's thermal efficiency. However, at higher velocities, the economic parameters for energy production showed improvements. Specifically, the system generated a maximum energy output of 9132 W in the fifth case, operating at a velocity of 2 m/s. Additionally, the system achieved an impressive performance coefficient of approximately 5.13 in the same case, with an inlet velocity of 0.46 m/s. Notably, the lowest recorded output temperature of the system was 22°C at the specified inlet velocity.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在建筑领域,制冷和供暖部门的能耗最高,约占总能耗的 30%。为了解决这一问题,并通过实施创新技术最大限度地减少能源消耗,人们进行了广泛的研究。在这些技术中,被动式地气热交换器(EAHE)已被证明在减少制冷和供暖领域的能源消耗方面非常有效。这项研究的重点是优化 U 型 EAHE 系统,并通过数值分析研究其功能和热流体参数。模拟采用了 COMSOL Multiphysics 软件,结果与实验数据非常吻合。研究调查了一个基本案例以及五个不同进口速度的优化案例,以评估性能。研究结果表明,提高工作流体的进口速度会降低系统的热效率。不过,在速度较高的情况下,能源生产的经济参数有所改善。具体来说,在第五种情况下,系统以 2 米/秒的速度运行时产生的最大能量输出为 9132 瓦。此外,在相同情况下,系统的性能系数达到了令人印象深刻的约 5.13,进气速度为 0.46 m/s。值得注意的是,在指定的进口速度下,系统的最低输出温度记录为 22°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing cooling performance and economic analysis of a vertical earth air heat exchanger (VEAHE) through geometric shape optimization

The cooling and heating sector is responsible for the highest energy consumption in the building sector, comprising approximately 30% of the total. Extensive research has been conducted to address this issue and minimize energy consumption through the implementation of innovative technologies. Among these technologies, the passive earth-air heat exchanger (EAHE) has proven highly effective in reducing energy usage in the cooling and heating sector. This research focused on optimizing U-shaped EAHE systems and examined their functional and thermal-fluidic parameters through numerical analysis. The simulation employed COMSOL Multiphysics software, and the results obtained were in excellent agreement with experimental data. The study investigated a base case, as well as five optimized cases with varying inlet velocities, to evaluate performance. The findings revealed that increasing the working fluid's inlet velocity led to a decrease in the system's thermal efficiency. However, at higher velocities, the economic parameters for energy production showed improvements. Specifically, the system generated a maximum energy output of 9132 W in the fifth case, operating at a velocity of 2 m/s. Additionally, the system achieved an impressive performance coefficient of approximately 5.13 in the same case, with an inlet velocity of 0.46 m/s. Notably, the lowest recorded output temperature of the system was 22°C at the specified inlet velocity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
期刊最新文献
Issue Information Characteristics of thermo‐hydraulic flow inside corrugated channels: Comprehensive and comparative review Unsteady flow past an impulsively started infinite vertical plate in presence of thermal stratification and chemical reaction A comparison between Hankel and Fourier methods for photothermal radiometry analysis Recent advancements in flow control using plasma actuators and plasma vortex generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1