基于结构动力学管理确保复杂物体可行性的方法论

I. Т. Kimyaev, B. V. Sokolov
{"title":"基于结构动力学管理确保复杂物体可行性的方法论","authors":"I. Т. Kimyaev, B. V. Sokolov","doi":"10.17587/mau.25.167-176","DOIUrl":null,"url":null,"abstract":"   The article examines a conceptual model that forms the basis of the authors’ proposed approach to solving the problem of creating integrated information-management systems (IMS) for making managerial decisions, embedded within the structure of vertically integrated Business Entity (BE) to maintain their viability. Viability is understood as the ability of an BE to maintain key technological and business indicators within safe ranges throughout its life cycle (LC), while being subject to the influence of destructive internal and external factors. The problem of synthesizing a generalized structure of an IMS is proposed to solve using a system-cybernetic approach, which considers this problem as the managing its structural dynamics. Managing structural dynamics enables maintaining a regulated level of viability of the vertically integrated BE at all the key stages of its life cycle. The proposed structure of model-algorithmic support (MAS) implements the methods for complexity management. This methodology proposes the approach that justifies the evolutionary redistribution of roles between managerial teams of the vertically integrated BE and functionally equivalent information-management systems. The results of implementing the structure of an IMS, as an example are provided, which arises through the transformation of its original multi-structural state into a qualitatively different state. Multi-structural states are characterized by the use of various control methods, such as \"Automatic Multi-Factor\", \"Automatic Optimal\" \"Manual on site\" etc. In the synthesis of the IMS structure, the methods for system modeling technologies based on simulation-statistical and fuzzy-possibilistic approaches were used.","PeriodicalId":36477,"journal":{"name":"Mekhatronika, Avtomatizatsiya, Upravlenie","volume":"221 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for Ensuring the Viability for a Complex Object Based on Managing its Structural Dynamics\",\"authors\":\"I. Т. Kimyaev, B. V. Sokolov\",\"doi\":\"10.17587/mau.25.167-176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"   The article examines a conceptual model that forms the basis of the authors’ proposed approach to solving the problem of creating integrated information-management systems (IMS) for making managerial decisions, embedded within the structure of vertically integrated Business Entity (BE) to maintain their viability. Viability is understood as the ability of an BE to maintain key technological and business indicators within safe ranges throughout its life cycle (LC), while being subject to the influence of destructive internal and external factors. The problem of synthesizing a generalized structure of an IMS is proposed to solve using a system-cybernetic approach, which considers this problem as the managing its structural dynamics. Managing structural dynamics enables maintaining a regulated level of viability of the vertically integrated BE at all the key stages of its life cycle. The proposed structure of model-algorithmic support (MAS) implements the methods for complexity management. This methodology proposes the approach that justifies the evolutionary redistribution of roles between managerial teams of the vertically integrated BE and functionally equivalent information-management systems. The results of implementing the structure of an IMS, as an example are provided, which arises through the transformation of its original multi-structural state into a qualitatively different state. Multi-structural states are characterized by the use of various control methods, such as \\\"Automatic Multi-Factor\\\", \\\"Automatic Optimal\\\" \\\"Manual on site\\\" etc. In the synthesis of the IMS structure, the methods for system modeling technologies based on simulation-statistical and fuzzy-possibilistic approaches were used.\",\"PeriodicalId\":36477,\"journal\":{\"name\":\"Mekhatronika, Avtomatizatsiya, Upravlenie\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mekhatronika, Avtomatizatsiya, Upravlenie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17587/mau.25.167-176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mekhatronika, Avtomatizatsiya, Upravlenie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17587/mau.25.167-176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

文章研究了一个概念模型,该模型是作者提出的解决问题的方法的基础,即创建用于管理决策的集成信息管理系统(IMS),并将其嵌入纵向一体化企业实体(BE)的结构中,以保持其生存能力。生存能力被理解为企业在整个生命周期(LC)内将关键技术和业务指标维持在安全范围内的能力,同时受到破坏性内部和外部因素的影响。建议使用系统-控制论方法来解决综合管理系统的通用结构问题,该方法将这一问题视为管理其结构动态。结构动态管理使纵向一体化企业在其生命周期的所有关键阶段都能保持一定的生存能力。建议的模型算法支持(MAS)结构实施了复杂性管理方法。该方法提出了纵向一体化 BE 管理团队与功能等同的信息管理系统之间的角色进化再分配方法。以一个信息管理系统的结构为例,提供了实施该结构的结果,它是通过将其原始的多结构状态转变为一种质的不同状态而产生的。多结构状态的特点是使用各种控制方法,如 "自动多因素"、"自动优化"、"现场手动 "等。在综合 IMS 结构时,使用了基于模拟统计和模糊可能性的系统建模技术方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methodology for Ensuring the Viability for a Complex Object Based on Managing its Structural Dynamics
   The article examines a conceptual model that forms the basis of the authors’ proposed approach to solving the problem of creating integrated information-management systems (IMS) for making managerial decisions, embedded within the structure of vertically integrated Business Entity (BE) to maintain their viability. Viability is understood as the ability of an BE to maintain key technological and business indicators within safe ranges throughout its life cycle (LC), while being subject to the influence of destructive internal and external factors. The problem of synthesizing a generalized structure of an IMS is proposed to solve using a system-cybernetic approach, which considers this problem as the managing its structural dynamics. Managing structural dynamics enables maintaining a regulated level of viability of the vertically integrated BE at all the key stages of its life cycle. The proposed structure of model-algorithmic support (MAS) implements the methods for complexity management. This methodology proposes the approach that justifies the evolutionary redistribution of roles between managerial teams of the vertically integrated BE and functionally equivalent information-management systems. The results of implementing the structure of an IMS, as an example are provided, which arises through the transformation of its original multi-structural state into a qualitatively different state. Multi-structural states are characterized by the use of various control methods, such as "Automatic Multi-Factor", "Automatic Optimal" "Manual on site" etc. In the synthesis of the IMS structure, the methods for system modeling technologies based on simulation-statistical and fuzzy-possibilistic approaches were used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mekhatronika, Avtomatizatsiya, Upravlenie
Mekhatronika, Avtomatizatsiya, Upravlenie Engineering-Electrical and Electronic Engineering
CiteScore
0.90
自引率
0.00%
发文量
68
期刊最新文献
Architecture, Models and Algorithms for Information Processing of a Mobile Training System for Musculoskeletal Rehabilitation Principle of Construction of Analog-to-Digital Converters with Adaptive Determination of Sampling Interval of Analyzed Signals Planning Goal-Directed Activities by an Autonomous Robot Based on Contradictory Information under Conditions of Uncertainty Algorithms for Controlling Dynamic Systems under Uncertainty. Part 2 Optimal Resource Management оn Preparing a Group of Similar Aircrafts for Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1