使用优化梯度提升算法估算具有汇聚和发散洪泛区的复合渠道中的排水量

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-04-10 DOI:10.2166/hydro.2024.292
Shashank Shekhar Sandilya, Bhabani Shankar Das, Dr. Sébastien Proust, Divyanshu Shekhar
{"title":"使用优化梯度提升算法估算具有汇聚和发散洪泛区的复合渠道中的排水量","authors":"Shashank Shekhar Sandilya, Bhabani Shankar Das, Dr. Sébastien Proust, Divyanshu Shekhar","doi":"10.2166/hydro.2024.292","DOIUrl":null,"url":null,"abstract":"\n River discharge estimation is vital for effective flood management and infrastructure planning. River systems consist of a main channel and floodplains, collectively forming a compound channel, posing challenges in discharge calculation, particularly when floodplains converge or diverge. Numerical models for discharge prediction require the solution of complex non-linear equations while traditional approaches often yield unreliable results with significant errors. To solve these complex non-linear problems, various machine learning (ML) approaches becoming popular. In the present study, ML algorithms, such as XGBoost, CatBoost and LightGBM, were developed to predict discharge in a compound channel. The PSO algorithm is applied for the optimisThe eesults show that all three gradient boosting algorithms effectively predict discharge in compound channels and are further enhanced by the application of the PSO algorithm. The R2 values for XGBoost, PSO-XGBoost, CatBoost and PSO-CatBoost exceed 0.95, whereas they are above 0.85 for LightBoost and PSO-LightBoost.The findings of this study validate the suitability of the proposed models, especially optimised with PSO is recommended for predicting discharge in a compound channel.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discharge estimation in compound channels with converging and diverging floodplains an using an optimised Gradient Boosting Algorithm\",\"authors\":\"Shashank Shekhar Sandilya, Bhabani Shankar Das, Dr. Sébastien Proust, Divyanshu Shekhar\",\"doi\":\"10.2166/hydro.2024.292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n River discharge estimation is vital for effective flood management and infrastructure planning. River systems consist of a main channel and floodplains, collectively forming a compound channel, posing challenges in discharge calculation, particularly when floodplains converge or diverge. Numerical models for discharge prediction require the solution of complex non-linear equations while traditional approaches often yield unreliable results with significant errors. To solve these complex non-linear problems, various machine learning (ML) approaches becoming popular. In the present study, ML algorithms, such as XGBoost, CatBoost and LightGBM, were developed to predict discharge in a compound channel. The PSO algorithm is applied for the optimisThe eesults show that all three gradient boosting algorithms effectively predict discharge in compound channels and are further enhanced by the application of the PSO algorithm. The R2 values for XGBoost, PSO-XGBoost, CatBoost and PSO-CatBoost exceed 0.95, whereas they are above 0.85 for LightBoost and PSO-LightBoost.The findings of this study validate the suitability of the proposed models, especially optimised with PSO is recommended for predicting discharge in a compound channel.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.292\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.292","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

河流排量估算对于有效的洪水管理和基础设施规划至关重要。河流系统由主河道和冲积平原组成,共同构成一个复合河道,这给排泄量计算带来了挑战,尤其是当冲积平原汇聚或分流时。用于排水量预测的数值模型需要求解复杂的非线性方程,而传统方法往往得出不可靠的结果,误差很大。为了解决这些复杂的非线性问题,各种机器学习(ML)方法开始流行起来。在本研究中,开发了 XGBoost、CatBoost 和 LightGBM 等 ML 算法来预测复合通道中的放电情况。结果表明,这三种梯度提升算法都能有效预测复合通道中的放电量,并在应用 PSO 算法后得到进一步提高。XGBoost、PSO-XGBoost、CatBoost 和 PSO-CatBoost 的 R2 值均超过 0.95,而 LightBoost 和 PSO-LightBoost 的 R2 值均超过 0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discharge estimation in compound channels with converging and diverging floodplains an using an optimised Gradient Boosting Algorithm
River discharge estimation is vital for effective flood management and infrastructure planning. River systems consist of a main channel and floodplains, collectively forming a compound channel, posing challenges in discharge calculation, particularly when floodplains converge or diverge. Numerical models for discharge prediction require the solution of complex non-linear equations while traditional approaches often yield unreliable results with significant errors. To solve these complex non-linear problems, various machine learning (ML) approaches becoming popular. In the present study, ML algorithms, such as XGBoost, CatBoost and LightGBM, were developed to predict discharge in a compound channel. The PSO algorithm is applied for the optimisThe eesults show that all three gradient boosting algorithms effectively predict discharge in compound channels and are further enhanced by the application of the PSO algorithm. The R2 values for XGBoost, PSO-XGBoost, CatBoost and PSO-CatBoost exceed 0.95, whereas they are above 0.85 for LightBoost and PSO-LightBoost.The findings of this study validate the suitability of the proposed models, especially optimised with PSO is recommended for predicting discharge in a compound channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1