利用子模型技术分析骨科水泥的断裂行为

IF 0.5 Q4 ENGINEERING, BIOMEDICAL Journal of Biomimetics, Biomaterials and Biomedical Engineering Pub Date : 2024-04-10 DOI:10.4028/p-io8hnf
Bachir Gasmi, B. Aour, S. Benbarek, A. Talha
{"title":"利用子模型技术分析骨科水泥的断裂行为","authors":"Bachir Gasmi, B. Aour, S. Benbarek, A. Talha","doi":"10.4028/p-io8hnf","DOIUrl":null,"url":null,"abstract":"Orthopedic cement is an essential component of cemented Total Hip Replacements (THR). It must ensure three essential functions: very good implant-cement adhesion, good bone-implant load transfer, and good antibiotic transport. The main objective of the present work is to study the fracture behavior of orthopedic cement in total hip replacements. The analysis is performed using the submodel technique. Two cases are being considered. The first case involves ordinary cracks, while the second case involves cracks emanating from cavities in the cement of the THR acetabular part. The effects of crack position and implant orientation on the variation of stress intensity factors (SIF) in the three failure modes are discussed. It has also been shown that the circumferential positions of cracks present a major risk of loosening of the prosthesis, especially when the defect is aligned with its axis.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Fracture Behavior of Orthopedic Cement Using Submodeling Technique\",\"authors\":\"Bachir Gasmi, B. Aour, S. Benbarek, A. Talha\",\"doi\":\"10.4028/p-io8hnf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthopedic cement is an essential component of cemented Total Hip Replacements (THR). It must ensure three essential functions: very good implant-cement adhesion, good bone-implant load transfer, and good antibiotic transport. The main objective of the present work is to study the fracture behavior of orthopedic cement in total hip replacements. The analysis is performed using the submodel technique. Two cases are being considered. The first case involves ordinary cracks, while the second case involves cracks emanating from cavities in the cement of the THR acetabular part. The effects of crack position and implant orientation on the variation of stress intensity factors (SIF) in the three failure modes are discussed. It has also been shown that the circumferential positions of cracks present a major risk of loosening of the prosthesis, especially when the defect is aligned with its axis.\",\"PeriodicalId\":15161,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-io8hnf\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-io8hnf","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

矫形骨水泥是骨水泥全髋关节置换术(THR)的重要组成部分。它必须确保三个基本功能:非常好的植入物-骨水泥粘附性、良好的骨-植入物载荷传递以及良好的抗生素运输。本研究的主要目的是研究骨水泥在全髋关节置换术中的断裂行为。分析采用子模型技术。考虑了两种情况。第一种情况涉及普通裂缝,第二种情况涉及来自全髋关节置换术髋臼部分骨水泥空腔的裂缝。讨论了三种失效模式中裂纹位置和植入物方向对应力强度因子(SIF)变化的影响。研究还表明,裂纹的圆周位置是假体松动的主要风险所在,尤其是当缺陷与轴线一致时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the Fracture Behavior of Orthopedic Cement Using Submodeling Technique
Orthopedic cement is an essential component of cemented Total Hip Replacements (THR). It must ensure three essential functions: very good implant-cement adhesion, good bone-implant load transfer, and good antibiotic transport. The main objective of the present work is to study the fracture behavior of orthopedic cement in total hip replacements. The analysis is performed using the submodel technique. Two cases are being considered. The first case involves ordinary cracks, while the second case involves cracks emanating from cavities in the cement of the THR acetabular part. The effects of crack position and implant orientation on the variation of stress intensity factors (SIF) in the three failure modes are discussed. It has also been shown that the circumferential positions of cracks present a major risk of loosening of the prosthesis, especially when the defect is aligned with its axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
期刊最新文献
Preparation and Characterization of PMMA/SrBHA Composites for Bone Replacement Applications Journal of Biomimetics, Biomaterials and Biomedical Engineering Vol. 65 Characterization of Polycaprolactone/Eucomis autumnalis Cellulose Composite: Structural, Thermal, and Mechanical Analysis Bio-Convective Flow of Micropolar Nanofluids over an Inclined Permeable Stretching Surface with Radiative Activation Energy Improving Chitosan/PVA Electrospun Nanofibers Antimicrobial Efficacy with Methylene Blue for Effective E. Coli Inhibition Using Photodynamic Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1