氧化锌/碳纳米管复合材料的光催化活性和抗菌特性

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nano Research Pub Date : 2024-04-08 DOI:10.4028/p-03r9ba
Hong Wu Zhu, Yusong Pan, Yuanqing Wang, Yanlei Xiang, Rong Han, Run Huang
{"title":"氧化锌/碳纳米管复合材料的光催化活性和抗菌特性","authors":"Hong Wu Zhu, Yusong Pan, Yuanqing Wang, Yanlei Xiang, Rong Han, Run Huang","doi":"10.4028/p-03r9ba","DOIUrl":null,"url":null,"abstract":"Photocatalytic technology is one of the promising technologies for wastewater treatment. Herein, zinc oxide/multi-walled carbon nanotubes (ZnO/CNTs) photocatalyst was successfully prepared by hydrothermal method with combining in-situ synthesis technology. The micro-morphology, crystalline structure, surface chemical elements, and optical properties were characterized by SEM, TEM, XRD, FTIR, UV-Vis, and DRS technologies. The ZnO/CNTs photo-catalyst exhibited enhancement photo activity for degradation of organic pollutants under simulated light irradiation. Specifically, the photo-catalytic activity of the ZnO/CNTs catalysts improved with the rise of CNTs content in the composites. Investigation on the photo-degradation mechanism verified that the presence of CNTs in the catalyst not only optimized the band structure of ZnO semiconductor but also contributed to the transfer of photo-generated electrons and reducing the recombination of electron-hole pairs due to its excellent conductivity. Moreover, the active radical groups such as superoxide radical (O-2), hole (h+), and hydroxyl radical (·OH) played the dominated role for the pollutants degradation under the simulated sunlight irradiation. In addition, ZCT20 catalysts and light irradiation had synergistic effects on antibacterial activity, whose antibacterial rates against E. coli and S. aureus were up to 99.96% and 99.94%, respectively. Investigation on antibacterial mechanisms revealed that the existence of ROS and the continuous release of Zn2+ played an important role for improving the antibacterial activity of the ZCT20 catalyst under the simulated sunlight irradiation.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic Activity and Antibacterial Properties of ZnO/CNTs Composites\",\"authors\":\"Hong Wu Zhu, Yusong Pan, Yuanqing Wang, Yanlei Xiang, Rong Han, Run Huang\",\"doi\":\"10.4028/p-03r9ba\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic technology is one of the promising technologies for wastewater treatment. Herein, zinc oxide/multi-walled carbon nanotubes (ZnO/CNTs) photocatalyst was successfully prepared by hydrothermal method with combining in-situ synthesis technology. The micro-morphology, crystalline structure, surface chemical elements, and optical properties were characterized by SEM, TEM, XRD, FTIR, UV-Vis, and DRS technologies. The ZnO/CNTs photo-catalyst exhibited enhancement photo activity for degradation of organic pollutants under simulated light irradiation. Specifically, the photo-catalytic activity of the ZnO/CNTs catalysts improved with the rise of CNTs content in the composites. Investigation on the photo-degradation mechanism verified that the presence of CNTs in the catalyst not only optimized the band structure of ZnO semiconductor but also contributed to the transfer of photo-generated electrons and reducing the recombination of electron-hole pairs due to its excellent conductivity. Moreover, the active radical groups such as superoxide radical (O-2), hole (h+), and hydroxyl radical (·OH) played the dominated role for the pollutants degradation under the simulated sunlight irradiation. In addition, ZCT20 catalysts and light irradiation had synergistic effects on antibacterial activity, whose antibacterial rates against E. coli and S. aureus were up to 99.96% and 99.94%, respectively. Investigation on antibacterial mechanisms revealed that the existence of ROS and the continuous release of Zn2+ played an important role for improving the antibacterial activity of the ZCT20 catalyst under the simulated sunlight irradiation.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-03r9ba\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-03r9ba","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光催化技术是一种前景广阔的废水处理技术。本文结合原位合成技术,采用水热法成功制备了氧化锌/多壁碳纳米管(ZnO/CNTs)光催化剂。通过 SEM、TEM、XRD、FTIR、UV-Vis 和 DRS 技术对其微观形貌、晶体结构、表面化学元素和光学性能进行了表征。在模拟光照射下,ZnO/CNTs 光催化剂具有增强降解有机污染物的光活性。具体而言,ZnO/CNTs 催化剂的光催化活性随着复合材料中 CNTs 含量的增加而提高。对光降解机理的研究证实,催化剂中 CNT 的存在不仅优化了 ZnO 半导体的能带结构,而且由于 CNT 具有良好的导电性,有助于光生电子的转移和减少电子-空穴对的重组。此外,在模拟太阳光照射下,超氧自由基(O-2)、空穴(h+)和羟基自由基(-OH)等活性自由基在污染物降解过程中发挥了主导作用。此外,ZCT20 催化剂和光照对抗菌活性具有协同作用,其对大肠杆菌和金黄色葡萄球菌的抗菌率分别高达 99.96% 和 99.94%。抗菌机理研究表明,在模拟阳光照射下,ROS 的存在和 Zn2+ 的持续释放对提高 ZCT20 催化剂的抗菌活性起了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic Activity and Antibacterial Properties of ZnO/CNTs Composites
Photocatalytic technology is one of the promising technologies for wastewater treatment. Herein, zinc oxide/multi-walled carbon nanotubes (ZnO/CNTs) photocatalyst was successfully prepared by hydrothermal method with combining in-situ synthesis technology. The micro-morphology, crystalline structure, surface chemical elements, and optical properties were characterized by SEM, TEM, XRD, FTIR, UV-Vis, and DRS technologies. The ZnO/CNTs photo-catalyst exhibited enhancement photo activity for degradation of organic pollutants under simulated light irradiation. Specifically, the photo-catalytic activity of the ZnO/CNTs catalysts improved with the rise of CNTs content in the composites. Investigation on the photo-degradation mechanism verified that the presence of CNTs in the catalyst not only optimized the band structure of ZnO semiconductor but also contributed to the transfer of photo-generated electrons and reducing the recombination of electron-hole pairs due to its excellent conductivity. Moreover, the active radical groups such as superoxide radical (O-2), hole (h+), and hydroxyl radical (·OH) played the dominated role for the pollutants degradation under the simulated sunlight irradiation. In addition, ZCT20 catalysts and light irradiation had synergistic effects on antibacterial activity, whose antibacterial rates against E. coli and S. aureus were up to 99.96% and 99.94%, respectively. Investigation on antibacterial mechanisms revealed that the existence of ROS and the continuous release of Zn2+ played an important role for improving the antibacterial activity of the ZCT20 catalyst under the simulated sunlight irradiation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nano Research
Journal of Nano Research 工程技术-材料科学:综合
CiteScore
2.40
自引率
5.90%
发文量
55
审稿时长
4 months
期刊介绍: "Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results. "Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited. Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy Journal of Nano Research Vol. 83 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1