{"title":"用机器学习识别澳大利亚东部山洪暴发干旱的属性和预测因子","authors":"M. Speer, J. Hartigan, Lance M. Leslie","doi":"10.3390/cli12040049","DOIUrl":null,"url":null,"abstract":"Flash droughts (FDs) are natural disasters that strike suddenly and intensify quickly. They occur almost anywhere, anytime of the year, and can have severe socio-economic, health and environmental impacts. This study focuses on a recent FD that began in the cool season of the Upper Hunter region of Eastern Australia, an important energy and agricultural local and global exporter that is both flood- and drought-prone. Here, the authors investigate the FD that started abruptly in May 2023 and extended to October 2023. The FD followed floods in November 2021 and much above-average May–October 2022 rainfall. Eight machine learning (ML) regression techniques were applied to the 60 May–October periods from 1963–2022, using a rolling windows attribution search from 45 possible climate drivers, both individually and in combination. The six most prominent climate drivers, and likely predictors, provide an understanding of the major contributors to the FD. Next, the 1963–2022 data were divided into two shorter timespans, 1963–1992 and 1993–2022, generally accepted as representing the early and accelerated global warming periods, respectively. The key attributes were markedly different for the two timespans. These differences are readily explained by the impacts of global warming on hemispheric and synoptic-scale atmospheric circulations.","PeriodicalId":504716,"journal":{"name":"Climate","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia\",\"authors\":\"M. Speer, J. Hartigan, Lance M. Leslie\",\"doi\":\"10.3390/cli12040049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flash droughts (FDs) are natural disasters that strike suddenly and intensify quickly. They occur almost anywhere, anytime of the year, and can have severe socio-economic, health and environmental impacts. This study focuses on a recent FD that began in the cool season of the Upper Hunter region of Eastern Australia, an important energy and agricultural local and global exporter that is both flood- and drought-prone. Here, the authors investigate the FD that started abruptly in May 2023 and extended to October 2023. The FD followed floods in November 2021 and much above-average May–October 2022 rainfall. Eight machine learning (ML) regression techniques were applied to the 60 May–October periods from 1963–2022, using a rolling windows attribution search from 45 possible climate drivers, both individually and in combination. The six most prominent climate drivers, and likely predictors, provide an understanding of the major contributors to the FD. Next, the 1963–2022 data were divided into two shorter timespans, 1963–1992 and 1993–2022, generally accepted as representing the early and accelerated global warming periods, respectively. The key attributes were markedly different for the two timespans. These differences are readily explained by the impacts of global warming on hemispheric and synoptic-scale atmospheric circulations.\",\"PeriodicalId\":504716,\"journal\":{\"name\":\"Climate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cli12040049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cli12040049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia
Flash droughts (FDs) are natural disasters that strike suddenly and intensify quickly. They occur almost anywhere, anytime of the year, and can have severe socio-economic, health and environmental impacts. This study focuses on a recent FD that began in the cool season of the Upper Hunter region of Eastern Australia, an important energy and agricultural local and global exporter that is both flood- and drought-prone. Here, the authors investigate the FD that started abruptly in May 2023 and extended to October 2023. The FD followed floods in November 2021 and much above-average May–October 2022 rainfall. Eight machine learning (ML) regression techniques were applied to the 60 May–October periods from 1963–2022, using a rolling windows attribution search from 45 possible climate drivers, both individually and in combination. The six most prominent climate drivers, and likely predictors, provide an understanding of the major contributors to the FD. Next, the 1963–2022 data were divided into two shorter timespans, 1963–1992 and 1993–2022, generally accepted as representing the early and accelerated global warming periods, respectively. The key attributes were markedly different for the two timespans. These differences are readily explained by the impacts of global warming on hemispheric and synoptic-scale atmospheric circulations.