带伺服系统的装配式 H 型钢支柱对地铁站安全挖掘的影响

Xiao Bing Xu, Yi Huai Liang, Qi Hu, Hong Liang Yao, Wen Ming Shen
{"title":"带伺服系统的装配式 H 型钢支柱对地铁站安全挖掘的影响","authors":"Xiao Bing Xu, Yi Huai Liang, Qi Hu, Hong Liang Yao, Wen Ming Shen","doi":"10.1680/jgeen.23.00195","DOIUrl":null,"url":null,"abstract":"This study introduced the innovative design of assembled H-shaped steel strut (AHSS) with servo system for the deep excavation of a T-shaped subway interchange station in soft soil. Through the analysis of field monitored axial force of strut, the horizontal displacement of retaining wall, the ground surface settlement and the displacement of nearby existing tunnel, it was found that the servo system could provide convincing stable axial force for each level of AHSS. When a new level of AHSS with servo system was put into operation, the axial force of the closest level of concrete strut above tended to be affected greater than the other levels of strut. The 1st level of concrete strut contributed much less to resisting horizontal displacement of diaphragm wall than the other levels of strut, and was under tension during the later stage of excavation. The maximum horizontal displacement of diaphragm wall, displacement of the existing tunnel and ground surface settlement were all controlled well with the operation of AHSS with servo system. Meanwhile, stricter control of the horizontal displacement for diaphragm wall in the early stage is considered to be beneficial to the control of the further deformation of excavation in the later stage.","PeriodicalId":509438,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of assembled H-shaped steel struts with servo system on the safe excavation of a subway station\",\"authors\":\"Xiao Bing Xu, Yi Huai Liang, Qi Hu, Hong Liang Yao, Wen Ming Shen\",\"doi\":\"10.1680/jgeen.23.00195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduced the innovative design of assembled H-shaped steel strut (AHSS) with servo system for the deep excavation of a T-shaped subway interchange station in soft soil. Through the analysis of field monitored axial force of strut, the horizontal displacement of retaining wall, the ground surface settlement and the displacement of nearby existing tunnel, it was found that the servo system could provide convincing stable axial force for each level of AHSS. When a new level of AHSS with servo system was put into operation, the axial force of the closest level of concrete strut above tended to be affected greater than the other levels of strut. The 1st level of concrete strut contributed much less to resisting horizontal displacement of diaphragm wall than the other levels of strut, and was under tension during the later stage of excavation. The maximum horizontal displacement of diaphragm wall, displacement of the existing tunnel and ground surface settlement were all controlled well with the operation of AHSS with servo system. Meanwhile, stricter control of the horizontal displacement for diaphragm wall in the early stage is considered to be beneficial to the control of the further deformation of excavation in the later stage.\",\"PeriodicalId\":509438,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jgeen.23.00195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Geotechnical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jgeen.23.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了装配式 H 型钢支撑(AHSS)与伺服系统的创新设计,用于软土中 T 型地铁换乘站的深基坑开挖。通过对现场监测到的支撑轴向力、挡土墙水平位移、地表沉降和附近既有隧道位移进行分析,发现伺服系统可为每层 AHSS 提供令人信服的稳定轴向力。当安装了伺服系统的新一级 AHSS 投入使用时,最上层混凝土支柱的轴力受到的影响往往大于其他支柱。第一层混凝土支撑在抵抗地下连续墙水平位移方面的作用远小于其他各层支撑,并且在后期开挖阶段处于受拉状态。通过使用带伺服系统的 AHSS,地下连续墙的最大水平位移、现有隧道的位移和地表沉降都得到了很好的控制。同时,前期对地下连续墙水平位移的严格控制有利于后期开挖变形的进一步控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of assembled H-shaped steel struts with servo system on the safe excavation of a subway station
This study introduced the innovative design of assembled H-shaped steel strut (AHSS) with servo system for the deep excavation of a T-shaped subway interchange station in soft soil. Through the analysis of field monitored axial force of strut, the horizontal displacement of retaining wall, the ground surface settlement and the displacement of nearby existing tunnel, it was found that the servo system could provide convincing stable axial force for each level of AHSS. When a new level of AHSS with servo system was put into operation, the axial force of the closest level of concrete strut above tended to be affected greater than the other levels of strut. The 1st level of concrete strut contributed much less to resisting horizontal displacement of diaphragm wall than the other levels of strut, and was under tension during the later stage of excavation. The maximum horizontal displacement of diaphragm wall, displacement of the existing tunnel and ground surface settlement were all controlled well with the operation of AHSS with servo system. Meanwhile, stricter control of the horizontal displacement for diaphragm wall in the early stage is considered to be beneficial to the control of the further deformation of excavation in the later stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method for calculating the lateral earth pressure on rigid anti-slip piles with EPS inclusions A method for predicting deformation field of deep foundation pit considering spatial effect Incorporating inherited variability into the drainage effect analysis of piezocone tests in gold tailings Evaluation of sand subgrade seepage erosion caused by buried pipeline leakage Study of energy transfer and stress wave propagation during SPT through energy measurement and PIV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1