异常风暴模式识别的机器学习方法

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-04-05 DOI:10.2166/hydro.2024.238
David Sharp, A. P. Barnes
{"title":"异常风暴模式识别的机器学习方法","authors":"David Sharp, A. P. Barnes","doi":"10.2166/hydro.2024.238","DOIUrl":null,"url":null,"abstract":"\n Anomaly detection is used to explore the link between data-driven anomalous storms and their socio-economic impact on countries within the North-West Pacific. Three anomaly detection models are trialled using three distinct algorithms on the storm tracks and temperature profiles of storms. A feature-based comparison of the top 5% of anomalous storms from each model is used to reveal variations in anomalous storm activity. Further to this, the socio-economic impact of the anomalous storms is assessed, revealing a link between the anomalous behaviour of storms and the impact experienced by countries on their path. A final cross-comparison shows that the k-Nearest Neighbour and Isolation Forest algorithms succeeded at identifying high-impacting storms. However, the agglomerative clustering model found many unique storms that had low impact. This highlights the importance of considering both trajectory and temperature in determining the severity and impact of erroneous storms.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for anomalous storm pattern identification\",\"authors\":\"David Sharp, A. P. Barnes\",\"doi\":\"10.2166/hydro.2024.238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Anomaly detection is used to explore the link between data-driven anomalous storms and their socio-economic impact on countries within the North-West Pacific. Three anomaly detection models are trialled using three distinct algorithms on the storm tracks and temperature profiles of storms. A feature-based comparison of the top 5% of anomalous storms from each model is used to reveal variations in anomalous storm activity. Further to this, the socio-economic impact of the anomalous storms is assessed, revealing a link between the anomalous behaviour of storms and the impact experienced by countries on their path. A final cross-comparison shows that the k-Nearest Neighbour and Isolation Forest algorithms succeeded at identifying high-impacting storms. However, the agglomerative clustering model found many unique storms that had low impact. This highlights the importance of considering both trajectory and temperature in determining the severity and impact of erroneous storms.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.238\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.238","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

异常检测用于探索数据驱动的异常风暴与其对西北太平洋国家的社会经济影响之间的联系。在风暴轨迹和风暴温度曲线上使用三种不同的算法试用了三种异常检测模型。对每个模型中前 5%的异常风暴进行基于特征的比较,以揭示异常风暴活动的变化。此外,还对异常风暴的社会经济影响进行了评估,揭示了风暴的异常行为与风暴路径上的国家所受影响之间的联系。最后的交叉比较结果表明,k-近邻算法和隔离森林算法成功地识别出了影响较大的风暴。然而,聚类模型发现了许多独特的低影响风暴。这突出表明,在确定错误风暴的严重程度和影响时,同时考虑轨迹和温度非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning approaches for anomalous storm pattern identification
Anomaly detection is used to explore the link between data-driven anomalous storms and their socio-economic impact on countries within the North-West Pacific. Three anomaly detection models are trialled using three distinct algorithms on the storm tracks and temperature profiles of storms. A feature-based comparison of the top 5% of anomalous storms from each model is used to reveal variations in anomalous storm activity. Further to this, the socio-economic impact of the anomalous storms is assessed, revealing a link between the anomalous behaviour of storms and the impact experienced by countries on their path. A final cross-comparison shows that the k-Nearest Neighbour and Isolation Forest algorithms succeeded at identifying high-impacting storms. However, the agglomerative clustering model found many unique storms that had low impact. This highlights the importance of considering both trajectory and temperature in determining the severity and impact of erroneous storms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1