S. Maurya, Abdelghani Errehymy, G. Vîlcu, H. Alrebdi, K. S. Nisar, A. Abdel‐Aty
{"title":"线性 f(Q)作用下的各向异性紧凑星体","authors":"S. Maurya, Abdelghani Errehymy, G. Vîlcu, H. Alrebdi, K. S. Nisar, A. Abdel‐Aty","doi":"10.1088/1361-6382/ad3b5f","DOIUrl":null,"url":null,"abstract":"\n In this paper, a significant leap forward in understanding compact stellar systems and the modified $f(Q)$ gravity theory is achieved. The pivotal discovery lies in the successful derivation of an exact solution that fulfills the static geometry and spherical symmetry criteria, permitting the studying of compact stellar configurations with an anisotropic fluid. The model is rigorously tested and satisfies the vital physical conditions within the stellar fluid, guaranteeing its viability. The equi-mass contours highlight an impressive correlation between the $f(Q)$ gravity parameters. Boosting $\\alpha$ while keeping $\\beta$ fixed and concurrently boosting $R$ leads to a significant global boost in mass distribution. This can be ascribed to the enhanced coupling arising from a higher $\\alpha$, which broadens the mass distribution. In addition, the larger object size arising from the rise in $R$ allows for more mass accommodation. Therefore, raising both $R$ and $\\alpha$ leads to an exaggerated mass distribution, proving the combined influence of coupling strength and object size on total mass. Altogether, this investigation advances our knowledge of compact stellar systems and supports the evolution of the modified $f(Q)$ theory of gravity, opening the way for more breakthroughs in this field.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic compact star in linear f(Q)-action\",\"authors\":\"S. Maurya, Abdelghani Errehymy, G. Vîlcu, H. Alrebdi, K. S. Nisar, A. Abdel‐Aty\",\"doi\":\"10.1088/1361-6382/ad3b5f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a significant leap forward in understanding compact stellar systems and the modified $f(Q)$ gravity theory is achieved. The pivotal discovery lies in the successful derivation of an exact solution that fulfills the static geometry and spherical symmetry criteria, permitting the studying of compact stellar configurations with an anisotropic fluid. The model is rigorously tested and satisfies the vital physical conditions within the stellar fluid, guaranteeing its viability. The equi-mass contours highlight an impressive correlation between the $f(Q)$ gravity parameters. Boosting $\\\\alpha$ while keeping $\\\\beta$ fixed and concurrently boosting $R$ leads to a significant global boost in mass distribution. This can be ascribed to the enhanced coupling arising from a higher $\\\\alpha$, which broadens the mass distribution. In addition, the larger object size arising from the rise in $R$ allows for more mass accommodation. Therefore, raising both $R$ and $\\\\alpha$ leads to an exaggerated mass distribution, proving the combined influence of coupling strength and object size on total mass. Altogether, this investigation advances our knowledge of compact stellar systems and supports the evolution of the modified $f(Q)$ theory of gravity, opening the way for more breakthroughs in this field.\",\"PeriodicalId\":505126,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad3b5f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad3b5f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, a significant leap forward in understanding compact stellar systems and the modified $f(Q)$ gravity theory is achieved. The pivotal discovery lies in the successful derivation of an exact solution that fulfills the static geometry and spherical symmetry criteria, permitting the studying of compact stellar configurations with an anisotropic fluid. The model is rigorously tested and satisfies the vital physical conditions within the stellar fluid, guaranteeing its viability. The equi-mass contours highlight an impressive correlation between the $f(Q)$ gravity parameters. Boosting $\alpha$ while keeping $\beta$ fixed and concurrently boosting $R$ leads to a significant global boost in mass distribution. This can be ascribed to the enhanced coupling arising from a higher $\alpha$, which broadens the mass distribution. In addition, the larger object size arising from the rise in $R$ allows for more mass accommodation. Therefore, raising both $R$ and $\alpha$ leads to an exaggerated mass distribution, proving the combined influence of coupling strength and object size on total mass. Altogether, this investigation advances our knowledge of compact stellar systems and supports the evolution of the modified $f(Q)$ theory of gravity, opening the way for more breakthroughs in this field.