{"title":"用于体内生物遥测应用的宽带槽式贴片天线","authors":"P. Mishra, Keshav Mathur, V. S. Tripathi","doi":"10.26636/jtit.2024.2.1412","DOIUrl":null,"url":null,"abstract":"This paper proposes a slotted patch antenna with wide bandwidth covering ISM frequency band (2.40-2.48 GHz) for implantable biotelemetry applications. A homogeneous skin phantom (HSP) model proves the usability of the proposed antenna in in-body environments. At a resonance frequency of 2.42 GHz, the design shows an S11 parameter of -35.56 dB, a percentage impedance bandwidth of 66.6% (2-4 GHz), and the maximum peak gain of -24.80 dBi. To validate the simulated results, the designed antenna was fabricated and measured, showing good compliance with the expected results. To ensure tissue safety, a specific absorption rate (SAR) is simulated for the proposed antenna which satisfies the requirements of IEEE standards, with a value of 87.75 W/kg for 10 g of tissue. The proposed antenna shows a telemetry range of 11 and 6.3 m at 7 kbps and 100 kbps data rates, respectively. The key features of the proposed antenna include the following: miniaturization, good S parameters, wide bandwidth, low SAR, good telemetry range, and high gain.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slotted Patch Antenna with Wide Bandwidth for In-body Biotelemetry Applications\",\"authors\":\"P. Mishra, Keshav Mathur, V. S. Tripathi\",\"doi\":\"10.26636/jtit.2024.2.1412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a slotted patch antenna with wide bandwidth covering ISM frequency band (2.40-2.48 GHz) for implantable biotelemetry applications. A homogeneous skin phantom (HSP) model proves the usability of the proposed antenna in in-body environments. At a resonance frequency of 2.42 GHz, the design shows an S11 parameter of -35.56 dB, a percentage impedance bandwidth of 66.6% (2-4 GHz), and the maximum peak gain of -24.80 dBi. To validate the simulated results, the designed antenna was fabricated and measured, showing good compliance with the expected results. To ensure tissue safety, a specific absorption rate (SAR) is simulated for the proposed antenna which satisfies the requirements of IEEE standards, with a value of 87.75 W/kg for 10 g of tissue. The proposed antenna shows a telemetry range of 11 and 6.3 m at 7 kbps and 100 kbps data rates, respectively. The key features of the proposed antenna include the following: miniaturization, good S parameters, wide bandwidth, low SAR, good telemetry range, and high gain.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.2.1412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.2.1412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Slotted Patch Antenna with Wide Bandwidth for In-body Biotelemetry Applications
This paper proposes a slotted patch antenna with wide bandwidth covering ISM frequency band (2.40-2.48 GHz) for implantable biotelemetry applications. A homogeneous skin phantom (HSP) model proves the usability of the proposed antenna in in-body environments. At a resonance frequency of 2.42 GHz, the design shows an S11 parameter of -35.56 dB, a percentage impedance bandwidth of 66.6% (2-4 GHz), and the maximum peak gain of -24.80 dBi. To validate the simulated results, the designed antenna was fabricated and measured, showing good compliance with the expected results. To ensure tissue safety, a specific absorption rate (SAR) is simulated for the proposed antenna which satisfies the requirements of IEEE standards, with a value of 87.75 W/kg for 10 g of tissue. The proposed antenna shows a telemetry range of 11 and 6.3 m at 7 kbps and 100 kbps data rates, respectively. The key features of the proposed antenna include the following: miniaturization, good S parameters, wide bandwidth, low SAR, good telemetry range, and high gain.