{"title":"利用 Bi-FPN 增强三维人脸重建特征,用于法证分析","authors":"Sincy John, A. Danti","doi":"10.53759/7669/jmc202404037","DOIUrl":null,"url":null,"abstract":"The representation of facial features in three-dimensional space plays a pivotal role in various applications such as facial recognition, virtual reality, and digital entertainment. However, achieving high-fidelity reconstructions from two-dimensional facial images remains a challenging task, particularly in preserving fine texture details. This research addresses this problem by proposing a novel approach that leverages a combination of advanced techniques, including Resnet, Flame model, Bi-FPN, and a differential render architecture. The primary objective of this study is to enhance texture details in reconstructed 3D facial images. The integration of Bi-FPN (Bi-directional Feature Pyramid Network) enhances feature extraction and fusion across multiple scales, facilitating the preservation of texture details across different regions of the face. The objective is to accurately represent facial features from 2D images in three-dimensional space. By combining these methods, the proposed framework achieves significant improvements in preserving fine texture details and overall facial structure. Experimental results demonstrate the effectiveness of the approach, suggesting its potential for various applications such as virtual try-on and facial animation.","PeriodicalId":516221,"journal":{"name":"Journal of Machine and Computing","volume":"22 S18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Face Reconstruction with Feature Enhancement using Bi-FPN for Forensic Analysis\",\"authors\":\"Sincy John, A. Danti\",\"doi\":\"10.53759/7669/jmc202404037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representation of facial features in three-dimensional space plays a pivotal role in various applications such as facial recognition, virtual reality, and digital entertainment. However, achieving high-fidelity reconstructions from two-dimensional facial images remains a challenging task, particularly in preserving fine texture details. This research addresses this problem by proposing a novel approach that leverages a combination of advanced techniques, including Resnet, Flame model, Bi-FPN, and a differential render architecture. The primary objective of this study is to enhance texture details in reconstructed 3D facial images. The integration of Bi-FPN (Bi-directional Feature Pyramid Network) enhances feature extraction and fusion across multiple scales, facilitating the preservation of texture details across different regions of the face. The objective is to accurately represent facial features from 2D images in three-dimensional space. By combining these methods, the proposed framework achieves significant improvements in preserving fine texture details and overall facial structure. Experimental results demonstrate the effectiveness of the approach, suggesting its potential for various applications such as virtual try-on and facial animation.\",\"PeriodicalId\":516221,\"journal\":{\"name\":\"Journal of Machine and Computing\",\"volume\":\"22 S18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Machine and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53759/7669/jmc202404037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53759/7669/jmc202404037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Face Reconstruction with Feature Enhancement using Bi-FPN for Forensic Analysis
The representation of facial features in three-dimensional space plays a pivotal role in various applications such as facial recognition, virtual reality, and digital entertainment. However, achieving high-fidelity reconstructions from two-dimensional facial images remains a challenging task, particularly in preserving fine texture details. This research addresses this problem by proposing a novel approach that leverages a combination of advanced techniques, including Resnet, Flame model, Bi-FPN, and a differential render architecture. The primary objective of this study is to enhance texture details in reconstructed 3D facial images. The integration of Bi-FPN (Bi-directional Feature Pyramid Network) enhances feature extraction and fusion across multiple scales, facilitating the preservation of texture details across different regions of the face. The objective is to accurately represent facial features from 2D images in three-dimensional space. By combining these methods, the proposed framework achieves significant improvements in preserving fine texture details and overall facial structure. Experimental results demonstrate the effectiveness of the approach, suggesting its potential for various applications such as virtual try-on and facial animation.